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The paper describes Late Jurassic–Early Cretaceous seep carbonate boulders from the Russian Arctic island of
Novaya Zemlya, collected in 1875 by A.E. Nordenskiöld during his expedition to Siberia. The carbonates are sig-
nificantly depleted in heavy carbon isotopes (δ13C values as low as ca.−40‰) and show textures typical for car-
bonates formed under the influence of hydrocarbons, such as fibrous carbonate cements and corrosion cavities.
The rocks contain index fossils of Late Oxfordian–Early Kimmeridgian, Late Tithonian (Jurassic) and latest
Berriasian–Early Valanginian (Cretaceous) age. The fossil fauna is species rich and dominated by molluscs,
with subordinate brachiopods, echinoderms, foraminifera, serpulids and ostracods.Most of the species, including
two chemosymbiotic bivalve species, likely belong to the ‘background’ fauna. Only a species of a hokkaidoconchid
gastropod, and a possible abyssochrysoid gastropod, can be interpreted as restricted to the seep environment.
Other seep faunas with similar taxonomic structure are suggestive of rather shallow water settings, but in case
of Novaya Zemlya seep faunas such structure might result also from high northern latitude.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The chemosynthetic environments grouped around deep marine
hydrocarbon emissions, known as hydrocarbon seeps (e.g. Paull et al.,
1984; Campbell, 2006; Judd and Hovland, 2007), together with hydro-
thermal vents (e.g. Lonsdale, 1977; Van Dover, 2000) and whale falls
(Smith and Baco, 2003) are characterized by distinct biota, largely
different from that of the surrounding marine environments (Levin,
2005). The large concentrations of reduced compounds available at
these sites, chiefly sulphides and to a lesser extent methane, sustain
mass accumulations of chemosymbiotic fauna, such as solemyid,
lucinid, thyasirid and vesicomyid clams, and bathymodiolin mussels
(Métiver and von Cosel, 1993; Sibuet and Olu, 1998; Fujikura et al.,
1999; Glover et al., 2004; Taylor and Glover, 2010; Krylova et al.,
2011), large abyssochrysoid gastropods (Kojima et al., 2001; Sasaki
et al., 2010) and siboglinid tubeworms (Hilário et al., 2011). Additional-
ly, exposed hard substrates provide attachment opportunities for
hard-substrate dwellers, such as serpulid polychaetes, and sea anem-
ones (e.g. Ten Hove and Zibrovius, 1986; Fabri et al., 2011; Vinn et al.,
2013). Shallowerwater (~300mand less) chemosynthetic communities
olish Academy of Sciences, ul.
978794.
z).
have few, or no seep and vent specialists, and their fauna is composed of
background species (i.e., species typical for the surrounding ‘normal’ sea-
bed) (Levin et al., 2000; Sahling et al., 2003; Dando, 2010).

Fossil hydrocarbon seep faunas are known since the Devonian
(Peckmann et al., 1999) and possibly Silurian (Barbieri et al., 2004).
The scarcity of sites older than late Mesozoic means that knowledge of
pre-Cretaceous hydrocarbon seep faunas is poor (Gischler et al., 2003;
Campbell, 2006; Peckmann et al., 2011, 2013). It has been suggested
that since at least the Late Devonian until the Early Cretaceous, seeps
were largely dominated by dimerelloid rhynchonellid brachiopods
(Peckmann et al., 2007; Sandy, 2010; Kiel et al., 2014), with molluscs
also present, although often subordinate (e.g. Peckmann et al., 1999,
2001, 2011); the younger seep sites are populated almost exclusively
bymolluscs (Kiel et al., 2008a, b; Kaim et al., 2009). However, the oldest
known mollusc-dominated seep faunas known are Late Jurassic
(Oxfordian) in age (Gaillard et al., 1992) and there are some other
Late Jurassic and Early Cretaceous seep sites which are dominated
both in abundance and diversity by molluscs (e.g. Campbell et al.,
1993; Kaim and Kelly, 2009; Hammer et al., 2011). At least some of
mollusc-dominated seep sites formed in relatively shallow water
(Hryniewicz et al., 2015). Irrespective of the bathymetrical setting and
their faunal composition, the seep carbonates display a set of characters
allowing their straightforward interpretation in the fossil record
(Campbell, 2006), such as significant contribution of isotopically light
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carbon (e.g. Kelly et al., 1995; Campbell et al., 2002; Peckmann et al.,
2003; Campbell, 2006), textures suggesting formation under the influ-
ence of gaseous or liquid hydrocarbons (e.g. Peckmann et al., 2002;
Campbell et al., 2008; Krause et al., 2009) and lipid biomarkers sugges-
tive of microbial processes accompanying methane oxidation (e.g.
Peckmann and Thiel, 2004; Birgel et al., 2008; Peckmann et al., 2009).

This paper presents three newMesozoic seep deposits and associated
fossils from the Arctic island of Novaya Zemlya, Russia. Two of the faunas
are Late Jurassic in age (Oxfordian/Kimmeridgian and Tithonian, respec-
tively) and one is Early Cretaceous (latest Berriasian–Valanginian). All
three fossil assemblages are composed almost exclusively of molluscs,
with very few brachiopods, serpulids and echinoderms, and associated
microfauna. In this paper we establish the seep origin of the Novaya
Zemlya material using stable C and O istope analyses and petrography.
We also re-figure fauna described from these deposits by Tullberg
(1881) with preliminary new identifications.

2. Locality

The material used for this study is stored in the Naturhistoriska
Riksmuseet in Stockholm (prefix NRM), Sweden and was collected on
the 14th of July, by Adolf Erik Nordenskiöld during his 1875 expedition
to the mouth of Yenisei river and to Siberia on board the ship Pröven
(Fig. 1; Nordenskiöld, 1877). It was initially studied and described by
Tullberg (1881) and some of the gastropods were later re-described
by Kaim et al. (2004) and Kaim and Biesel (2005), although their seep
origin was not suspected at the time. The material was most likely
collected at the base of a cliff formed of Silurian rocks in ‘Skodde Bay’
on Novaya Zemlya (Nordenskiöld, 1877; Stuxberg, 1877; Tullberg,
1881). The locality name does not exist on any past or recent topo-
graphic map of Novaya Zemlya; further, there are no Jurassic rocks
marked on any geological map of the area. To track the origin of thema-
terial, we analysed the timeline of the Pröven expedition using unpub-
lished materials (the log book and weather report) stored in the Royal
Swedish Academy of Sciences in Stockholm, together with official pub-
lished reports (Nordenskiöld, 1877; Stuxberg, 1877). There are only
written accounts of fossils collected in ‘Skodde Bay’ on the 14th of
July, 1875, but the bay and the landing site are not indicated on any
map. Tullberg (1881) also discusses fossil material collected further
south in Bezymyannaya Bay (Besimennaya Bay in Tullberg (1881) and
on NRM labels; literally means No-name Bay in Russian), but stable C
Fig. 1. The path of the 1875 Pröven expedition of A.E. Nordenskiöld to Novaya Zemlya and Sibe
(1877) and Stuxberg (1877).
isotope values between −3.7 to −1.7 δ13C ) suggest this material is
most likely not of a seep origin and will not be discussed further here.

The Nordenskiöld expedition used the small 43-ton Norwegian
yacht Pröven. The team of 17 men boarded ship in Tromsø, Norway,
and left for the sea on the 14th of June, 1875, entering the Barents Sea
on the 17th. After crossing the Barents Sea, Pröven reached the Southern
Island of Novaya Zemlya near the northern shores of Goose Land on
22nd of June, stayed there for four days (Fig. 1) and proceeded north-
wards towards Matochkin Shar, which was reached on the 6th of July
(Stuxberg, 1877). The attempt to cross the strait was unsuccessful and
after six days, on the 13th the ship turned back into a severe SW
wind. According to Nordenskiöld (1877), the ship proceeded only a
short distance towards the SW and then, as thewind died down, drifted
close to shore on the 14th and anchored close to a cape noted as ‘Säulen
C.’ in a shallow bight named as ‘Skodde Bay’. ‘Säulen’ (‘pillars’) is written
as ‘Столбы’ (‘Stolbi’) in Russian. If such direct translation is applied, then
it seems likely that on the 14th of July Pröven anchored close to Cape
Stolbovoi west of themouth ofMatochkin Shar. ‘Skodde Bay’ represents
an informal 19th Century name given, presumably, to Bakan Bay by
Norwegian hunters (Nordenskiöld, 1877). It is also possible that the ex-
pedition anchored in Pomorskaya Bay close to Cape Matochkin (Fig. 2),
misidentified in bad weather as ‘Säulen C.’.

The area west of the mouth of Matochkin Shar is known to contain
Late Jurassic and Early Cretaceous fossils from erratic boulders spread
out over a relatively large area (Holtedahl, 1924; Salfeld and Frebold,
1924; Bodylevsky, 1936a, b, 1967; Dibner, 1962) and we postulate
that the studied material is also erratic in origin and therefore ex-situ.
The source for the erratic boulders is uncertain. The lithology of the
Jurassic–Cretaceous rocks on Spitsbergen (Birkenmajer et al., 1982)
and Franz Josef Land (Dibner and Shulgina, 1998) is different from the
inferred host rocks of the seep carbonate boulders and it is unlikely
that they come from these islands. They might have come from the
Jurassic rocks cropping out in the Northern Siberia, which are more
coarse-grained (e.g. Wierzbowski and Rogov, 2013a, 2013b and refer-
ences therein).

3. Materials and methods

Blocks of fossil seep carbonates collected during Nordenskiöld’s ex-
pedition at ‘Skodde Bay’ are up to 20 cm in diameter. All blocks are frag-
ments of larger boulderswhichwere brokenup, presumably in thefield,
ria. Inset marks the approximate position of map from Fig. 2. Modified from Nordenskiöld



Fig. 2. The map of western mouth of Matochkin Shar. The white circle marks a possible
anchorage of Pröven on 14th of July, 1875. Based on Holtedahl (1922).

Fig. 3. Stratigraphic position of the seep carbonate boulders from Novaya Zemlya. Length
of bars indicates dating uncertainties, not the duration of seepage. Dates after Ogg et al.
(2012).
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to recover the fossils. The fewweathered surfaces available are polished,
possibly due to glacial action, and pitted due to dissolution of carbonate.
The material can be grouped into three main lithologies: calcareous
sandstones, black limestones and sandy limestones (Tullberg, 1881,
p. 6). All fossils are very well preserved, with some shells still retaining
an original aragonitic structure. Mechanical preparation of most of the
fossils from their matrices was necessary.

Carbonate samples from all the lithologies were analysed for their
stable isotope compositions (δ13C and δ18O) at the Department of
Earth Science, University of Bergen, Norway. Fragments of calcareous
sandstones and sandy limestones were removed from larger blocks
using pliers; the black limestone proved to be tougher and had to be
hand-drilled. The samples were analysed using Finnigan MAT251 and
MAT253 machines coupled to automated Kiel devices; the data are re-
ported to VPDB standard; the long-term analytical precision is 0.05‰
with respect to δ13C and 0.1‰ with respect to δ18O. A few blocks were
cut on a rock saw and polished to investigate their macroscopic tex-
tures, and smaller fragments were used to prepare petrographic thin
sections. These sections were investigated in plane-polarized and
cross-polarized light using a Leica DMLB microscope; when necessary,
the whole thin-sections were scanned using a Nikon LS4000 slide scan-
ner. The definitions of different carbonate phases follow that of Folk
(1959).
4. Results

4.1. Seep carbonate ages

The lithological subdivision of Tullberg (1881) can be further sup-
ported by age differences shown by index fossils extracted from the
boulders. The calcareous sandstones contain numerous specimens of
the ammonite Amoeboceras sp., and therefore can be dated as Late
Oxfordian–Early Kimmeridgian (Fig. 3; Sykes and Callomon, 1979;
Zeiss, 2003;Wierzbowski andRogov, 2013a, 2013b). Species-level iden-
tification of Amoeboceras found in the current material and thus poten-
tially narrowing down the age of the calcareous sandstone blocks is
currently not possible due to lack of individuals with well preserved
ventral margin. The black limestones contain ammonites, preliminarily
identified as belonging to the earliest Late Volgian species Craspedites
okensis. The Late Volgian is roughly correlable with the Late Tithonian–
earliest Berriasian, and the black limestones can therefore be dated as
Late Tithonian (Fig. 3; Zakharov and Rogov, 2008; Wierzbowski et al.,
2011). The sandy limestones do not contain any ammonites, therefore,
precise dating is problematic. The blocks do contain abundant speci-
mens of the bivalve Buchia, which is most similar to the morphology of
specimens of Buchia inflata that occur in the latter part of the temporal
range of this species, or to Buchia keyserlingi (Zakharov, 1981; Surlyk
and Zakharov, 1982); this suggests a latest Ryazanian–Early Valanginian
age for the sandy limestone blocks (Fig. 3). A latest Ryazanian age can
be correlated with latest Berriasian in the standard stratigraphy
(Wierzbowski et al., 2011) and the latter age is used in this paper.
4.2. Petrography and stable isotopes

Carbonate fabrics in all the investigated facies are fairly simple and
homogenous, although some carbonate authigenetic phases are
present.

The Late Oxfordian–Early Kimmeridgian calcareous sandstones are
dark grey, highly fossiliferous, homogenous and devoid of any macro-
scopically visible primary cavities filled with cements (Fig. 4A). The
rock is mostly composed of fine to medium-grained quartz grains. The
pore space is occluded by calcitic microspar (ms) with clotted micritic
aggregates (Fig. 4B). Up to 10% of the grains are volcanic glass clasts,
up to 2mm in diameter,which in some cases are replaced by aggregates
of phyllosilicate minerals (Fig. 4C). These grains are often covered and
impregnated with pyrite (Fig. 4C). The bioclastic content comprises bi-
valve (Fig. 4D), scaphopod (Fig. 4E) and ammonite shells, rare calcare-
ous foraminifera (Fig. 4F), echinoderm skeletal fragments (Fig. 4G)
and serpulid worm tubes (Fig. 4H). The only cavities filled with fine
fibrous cements are those within some serpulid tubes (Fig. 4H).

The Late Tithonian black limestones are rich in macroscopically vis-
ible cavities, filled with banded botryoidal cements (Fig. 5A). The rock is
composed of several carbonate phases. Of these, the twomost common
are brown microspar with rare bioclasts (ms; Fig. 5B) and peloidal car-
bonate (pc) composed of possible fecal pellets (pc; Fig. 5C). The most
common clasts within bothmicrospar and peloidal carbonate are ostra-
cods (Fig. 5D), and bivalve shells (Fig. 5E). Rare pyrite framboids are dis-
persed within the microspar and may impregnate some of the peloids.
Both phases occur together, and gradational or rapid change can be ob-
served frommicrospar, throughmicrospar with rare peloids, to peloidal
wackstone and peloidal packstone (Fig. 5E). Microspar and peloidal
carbonates are truncated by corrosion surfaces, often associated with
the impregnation of the corroded surface with pyrite (Fig. 5F). Several
corrosion events can be seen, followed by recurring formation of
microspar/peloidal carbonate phases (Fig. 5F). Some corrosion resulted



Fig. 4. LateOxfordian–Early Kimmeridgian calcareous sandstone petrography. A) Polished hand specimenwith gastropod. NRMMo1322a. B) Fine tomediumquartz sand grains cemented
by micritic carbonate. C) Unidentified green fractured clasts of possible volcanogenic origin (right) and (left) grain of the same material, here totally replaced by phyllosilicates. D)Well-
preserved bivalve shell bioclast. E) Oblique cross-section of a possible scaphopod tube. F) Calcareous foraminiferan, enclosed in carbonate matrix. G) Echinoderm skeletal fragment,
partially replaced by blocky calcite. H) Serpulid worm tube, filled by acicular cement (right) and blocky calcite (left). B–H NRM Mo2593x. All images in plane polarized light.
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in the formation of a brecciated fabric (Fig. 5G). The last corrosion event
is usually not associated with pyrite but followed by formation of band-
ed botryoidal carbonate (bbc), lining the cavities (Fig. 5H). Unlike many
other fossil seep carbonates, there is no late stage blocky calcite present.
The idealized paragenetic sequence can thus be presented as follows:
ms–pc → corrosion(pyrite)→ ms–pc → corrosion → bbc.



Fig. 5. Late Tithonian black limestone petrography. A) Polished hand specimen showing nodules and cavities filled with banded botryoidal cements. Mo167763. B) Calcareous microspar
with rare dispersed fecal peloids. NRM PZ X 5312. C) Peloidal carbonate composed of an accumulation of fecal pellets. NRM PZ X 5312. D) Ostracod between peloids. NRM PZ X 5313.
E) Gradual change frommicrosparwith fecal peloids tomore condensed peloidal carbonate. NRMPZX 5314. F) Corrosion surface coveredwith iron oxyhydroxides, followed bymicrospar
formation.NRMPZX 5312. G) Corroded carbonate fragments, coatedwith iron oxyhydroxides andencased inmicrospar-peloidal carbonate association.NRMPZX5315.H) Fans of banded
botryoidal cements nucleating on corroded carbonate surface. NRM PZ X 5312. A–G plane polarized light, H cross polarized light.

235K. Hryniewicz et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 436 (2015) 231–244



Fig. 6. Latest Berriasian–Early Valanginian sandy limestones petrography. A)Weathered block with abundant fossils and yellow-gray coloration. NRMMo167817. B) Fine grained quartz
sand grains cemented by micritic carbonate. C) Well-preserved protobranch bivalve shell, showing taxodont dentition. D) Well-preserved carbonate fecal peloids enclosed by fine sand
matrix. E) Gastropod shell infilled by fine gray micrite and clotted micrite. F) Gastropod shell with last whorl geopetally filled with clastic-carbonate mixture, and earlier whorls filled
with acicular carbonate cement, which nucleates on the inner walls of the shell. B–F NRMMo167817x. All images in plane polarized light.
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The latest Berriasian–Early Valanginian sandy limestones are
yellowish-grey, highly fossiliferous and without any macroscopically
visible cavities (Fig. 6A). They are predominantly composed of fine,
poorly rounded quartz grains (Fig. 6B). The pore space is filled with
gray to brown micrite (Fig. 6B). The most common grains are bioclasts,
predominantly bivalve (Fig. 6C) and gastropod shell fragments, and
possible fecal peloids (Fig. 6D), with a small admixture of wood frag-
ments. The gastropod shells are often complete and have fills of clotted
greymicrite (Fig. 6E) and geopetal fine sand (Fig. 6F). Some of the early
whorls are filled with fibrous cements (Fig. 6F).

The stable C and O isotope values of all three lithologies show fairly
narrow groupings (Table 1, Fig. 7). All the Late Oxfordian–Early
Kimmeridgian δ13C values come from calcitic microspar cementing the
pore space and are low; between −31.0‰ and −40.1‰. The δ18O iso-
tope values are between 0.1‰ and−0.4‰, thus having a seawater sig-
nature. The Late Tithonian black limestones show a wider range of δ13C
values (from−16.7‰ to−41.3‰), but with most being below−30‰.
The δ18O values plot between−3.1‰ and 0.0‰, which is close to a nor-
mal marine signature; δ18O values greater than −1.2‰ are more com-
mon. The latest Berriasian–Early Valanginian sandy limestones are the
isotopically heaviest of all the Novaya Zemlya seep lithologies with re-
spect to δ13C (values between −21.8‰ and −26.0‰). The δ18O values
are close to normal marine (between 0.2‰ and −1.0‰, respectively).
4.3. Fossil content

All three lithologies contain diverse macrofauna, comprising pre-
dominantly molluscs, with subordinate echinoderms and brachiopods.
The faunal list, with original identifications of Tullberg (1881), and
preliminary re-interpretations, is given in Table 2. We plan a detailed
taxonomic redescription of all of the taxa in a subsequent paper, to sup-
plement the work by Kaim et al. (2004) and Kaim and Beisel (2005) on
some of the gastropods from the fauna.



Table 1
Stable isotopes values from Late Jurassic–Early Cretaceous seep carbonate boulders from Novaya Zemlya.

Sample name Lithology δ13C δ18O Age

Mo 1185a Calcareous sandstone −35.2 −0.3 Late Oxfordian–Early Kimmeridgian
Mo 1185b Calcareous sandstone −34.4 −0.4 Late Oxfordian–Early Kimmeridgian
Mo 1185c Calcareous sandstone −37.4 −0.4 Late Oxfordian–Early Kimmeridgian
Mo 1185d Calcareous sandstone −31.0 −0.2 Late Oxfordian–Early Kimmeridgian
Mo 1329a Calcareous sandstone −39.1 0.1 Late Oxfordian–Early Kimmeridgian
Mo 167816a Calcareous sandstone −36.6 0.1 Late Oxfordian–Early Kimmeridgian
Mo 167816b Calcareous sandstone −40.1 0.1 Late Oxfordian–Early Kimmeridgian
SB 2 Black limestone −40.5 −0.7 Late Tithonian
SB 3 Black limestone −30.3 −0.6 Late Tithonian
SB 4 Black limestone −41.3 −0.2 Late Tithonian
SB 5 Black limestone −32.0 −0.8 Late Tithonian
SB 6 Black limestone −32.6 −0.5 Late Tithonian
SB 7 Black limestone −32.0 −0.5 Late Tithonian
SB 8 Black limestone −38.6 −0.3 Late Tithonian
SB 9 Black limestone −36.0 −0.4 Late Tithonian
SB 10 Black limestone −38.3 0.0 Late Tithonian
SB 11 Black limestone −16.7 −3.1 Late Tithonian
SB 12 Black limestone −32.0 −1.0 Late Tithonian
SB 13 Black limestone −31.8 −0.6 Late Tithonian
SB 14 Black limestone −27.1 −1.3 Late Tithonian
SB 15 Black limestone −37.9 0.0 Late Tithonian
SB 16 Black limestone −34.2 −0.7 Late Tithonian
SB 17 Black limestone −30.2 −0.8 Late Tithonian
SB 18 Black limestone −28.1 −1.2 Late Tithonian
SB 19 Black limestone −36.1 −0.1 Late Tithonian
Mo 167187 Sandy limestone −22.8 −0.9 latest Berriasian–Early Valanginian
Mo 167817Z Sandy limestone −25.3 −0.6 latest Berriasian–Early Valanginian
Mo 167817Y Sandy limestone −26.0 −0.2 latest Berriasian–Early Valanginian
Mo 167817X Sandy limestone −22.7 −1.0 latest Berriasian–Early Valanginian
Mo 167817V Sandy limestone −21.8 −1.0 latest Berriasian–Early Valanginian
Mo 167817Q Sandy limestone −24.2 −0.6 latest Berriasian–Early Valanginian
Mo 149380X Sandy limestone −25.0 −0.5 latest Berriasian–Early Valanginian
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The Late Oxfordian–Early Kimmeridgian calcareous sandstones
contain 11 species of invertebrate macrofauna, nine of which are
molluscs (Fig. 8; Table 2). The fossils are mostly uncrushed and have
their original shell structure preserved, including nacre. The most
numerous species is the ammonite Amoeboceras sp., preserved as both
mature specimens (Fig. 8A) and juveniles. Gastropods are represented
by two species. One is a eucyclid (ascribed to two species of Turbo by
Tullberg (1881)) (Fig. 8B); the other (Cerithium elatum of Tullberg
(1881)) is a hokkaidoconchid (Fig. 8C) and is much more common.
Bivalves are fewer in number than the gastropods. These include
Fig. 7. Cross plot of δ13C and δ18O composition of all of the three Novaya Zemlya seep car-
bonates. Open circle indicates Late Oxfordian–Early Kimmeridgian calcareous sandstones,
cross indicates Late Tithonian black limestones, X indicates latest Berriasian–Early
Valanginian sandy limestones.
disarticulated specimens of the epifaunal genus Oxytoma (Avicula
muensteri of Tullberg (1881)) (Fig. 8D) and disarticulated specimens
of a thick-shelled astartiid bivalve, not figured in Tullberg (1881)
(Fig. 8E). The only semi-articulated bivalve specimens belong to the
deep-burrowing species Goniomya elegantula of Tullberg (1881)
(Fig. 8F). There are also numerous large (N20 mm in the longest axis)
shell fragments of unidentified bivalves. Other fossils comprise
belemnoid guards, scaphopods and serpulid tubes, echinoderm skeletal
plates (identified in thin section), and numerous fragments of sunken
driftwood.

The Late Tithonian black limestones contain at least 13 macrofossil
species, which are well preserved, retaining much original shell struc-
ture, but rather sparse (Fig. 9, Table 2). There is a single species of am-
monite: Craspedites okensis (Fig. 9A). Gastropods are represented by
Eulima undulata of Tullberg (1881), reindentified as the rissoid
Hudlestoniella by Kaim et al. (2004) (Fig. 9B). The black limestones
seep fauna is the only one from the Stockholm Novaya Zemlya collec-
tions to contain chemosymbiotic bivalves. These comprise Solenomya
costata of Tullberg, 1881, which we interpret as a species of an as yet
unidentified solemyid genus (Fig. 9C), and Ptychostolis nordenskioeldi
of Tullberg (1881) which is a species of the shallow burrowing
genus Nucinella (Fig. 9D). Specimens of shallow burrowing nuculid
protobranch bivalves belong to Nucula sp. (Fig. 9E) (Nucula borealis of
Tullberg (1881)), and Dacromya sp. (Fig. 9F) (Leda zieteni of Tullberg
(1881)). Another protobranch is a species of malletiid (Fig. 9G)
(Leda galathea of Tullberg (1881)). Epifaunal bivalves are represent-
ed by three species: an arcoid (Fig. 9H) (Cucullaea novaesemlyae of
Tullberg (1881)), a few poorly preserved specimens of Oxytoma
(Avicula muensteri of Tullberg (1881)), and a single internal mould of
Pseudolimea sp. (Fig. 9I) (Limea duplicata of Tullberg (1881)). The
most numerous bivalve in the fauna (N10 specimens) is the epifaunal
bivalve Buchia obliqua (Fig. 9J) (Aucella keyserlingiana f. obliqua of
Tullberg (1881)). The only heterodont in the fauna is a single specimen



Table 2
List of the macrofossils from Late Jurassic–Early Cretaceous seep boulders fromNovaya Zemlya, with identifications of Tullberg (1881) and our preliminary re-interpretation of their sys-
tematic position. The x indicates species in Tullberg (1881); a number in brackets is number of specimens discovered during the study; ‘?’marks species in Tullberg (1881) not confirmed
by us in this study.

calcareous sandstones black limestone sandy limestones

Age proposed herein Late Oxfordian–Early Kimmeridgian Late Tithonian latest Berriasian–Early Valanginian
Age based on Amoeboceras sp. Craspedites okensis Buchia cf. inflata
Faunal list of Tullberg (1881) Identification proposed herein
Ammonites alternans x (many) Amoeboceras sp.
Ammonites okensis x (2) Craspedites okensis
Belemnites magnificus x (few) Belemnoid guard
Dentalium subanceps x (few) x (2) Scaphopod sp.
Turbo unicostatus n. sp. x (?) Eucyclid sp.
Turbo micans n. sp. x (3) x (3) Eucyclid sp.
Turbo capitaneus x (4) Eucyclid sp.
Cerithium elatum n. sp. x (many) Hokkaidoconchid sp.
Turitella novaesemljae n. sp. x (2) High-spired gastropod sp.
Eulima pusilla n. sp. x (?) x (many) Huddlestoniella pusilla
Eulima undulata n. sp. x (1) Huddlestoniella undulata
Acteon exsculptus n. sp. x (1) Bullinid sp.
Acteon Frearsianus n. sp. x (1) Bullinid sp.
- x (1) Maturifusid sp.
Ptychostolis nordenskioeldi gen. et sp. nov. x (7) Nucinella sp.
Solenomya costata n. sp. x (2) Solemyid sp.
Nucula borealis n. sp. x (5) Nuculid sp.
Nucula sp. x (1) Nuculid sp.
Leda zieteni x (5) Dacromya sp.
Leda angulata x (1) Protobranch sp. A
Leda galathea x (1) x (2) Malletiid sp.
Leda subovalis x (1) Protobranch sp. B
Cucullaea novaesemljae n. sp. x (1) Arcoid sp.
Aucella Keyserligniana Trautsch. f. obliqua x (many) Buchia obliqua
Aucella Keyserligniana Trautsch. f. majuscula x (many) Buchia cf. inflata
Inoceramus revelatus Keyserling x (?) x (?) -
Pecten lindstroemi n. sp. x (?) x (1) Camptonectes sp.
Avicula muensteri x (2) x (1) x (1) Oxytoma sp.
Limea duplicata x (1) x (1) Pseudolimea sp.
Ostrea sp. x (?) -
Astarte voltzii x (3) Astartiid sp.
- x (4) Astartiid sp.
Crastasella? sp. x (?) -
Cardium concinnum x (?) -
Cardium sp. x (?) -
Tellina subalpina x (3) Heterodont bivalve sp.
Cyprina polaris x (1) Arcticid sp.
Goniomya elegantula x (3) x (1) Goniomya sp.
- x (many) Bivalve sp.
- x (1) Rhynchonellide sp.
- x (5) Terebratulide sp.
- x (many) Echinoderm sp.
- x (many) Serpulid sp.
- x (common) x (common) x (common) Sunken driftwood
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of arcticid (Fig. 9K) (Cyprina polaris of Tullberg (1881)). There are also a
few scaphopods in the black limestones, as well as fragments of sunken
driftwood.

The latest Berriasian–Early Valanginian sandy limestones are highly
fossiliferous and contain well-preserved specimens, with shell material
mostly preserved (Fig. 10) (Table 2). The gastropods comprise common
specimens of the rissoidHudlestoniella pusilla as identified by Kaim et al.
(2004) (Fig. 10A) (Eulima pusilla of Tullberg (1881)), which occur as
accumulations of dozens of specimens in individual blocks. The four
other gastropod species are far less common. These are a few specimens
of a eucyclid gastropod (Turbo capitaneus of Tullberg, 1881)), a
maturifusid (Fig. 10B), a bullinid (Fig. 10C) (identified as Acteon by
Tullberg (1881)), and two specimens of a large high-spired gastropod
(Fig. 10D) identified by Tullberg (1881) as Turitella novaesemljae. This
gastropod almost certainly does not belong to the turitellids, and re-
quires more taxonomic work; for now we refer to it as a ‘high-spired
gastropod’ though most likely it is an abyssochrysoid and might be
another seep-restricted gastropod next to the hokkaidoconchid (AK un-
published data). There are 11 bivalve species in the sandy limestones
material (Table 2). Four of them are protobranchs: a poorly preserved
nuculid; a malletiid (Fig. 10E) and two unidentified species, sp. A
(Fig. 10F), and sp. B (Fig. 10G). Other bivalves in the fauna include
Buchia cf. inflata (Aucella keyserlingiana f. majuscula of Tullberg (1881)
(Fig. 10H), Oxytoma sp. (Fig. 10I) a single fragmentary preserved speci-
men of Pseudolimea, and a pectinid, possibly a species of Camptonectes
(Fig. 10J). Infaunal bivalves comprise a small astartiid, identified
by Tullberg (1881) as Astarte voltzii, and a small heterodont bivalve
(Fig. 10L), as yet unidentified. Goniomya elegantula is another infaunal
bivalve present in the material. The sandy limestones are the only
investigated lithology to host rhynchonellate brachiopods. These
are one rhynchonellide (Fig. 10M) and one terebratulide species
(Fig. 10N). The sandy limestones also contain abundant sunken drift-
wood fragments.

5. Discussion

5.1. Seep origin of the Novaya Zemlya boulders

The textures found in all the boulders are typical for authigenically
precipitated carbonates (e.g. Peckmann and Thiel, 2004), and the



Fig. 8. Fossils from the Late Oxfordian–Early Kimmeridgian calcareous sandstones. A) Amoeboceras sp., NRM Mo 2593a. B) Eucyclid sp., B1) NRM Mo2593b, B2) NRM Mo167816a.
C) Hokkaidoconchid sp. (Cerithium elatum of Tullberg (1881)), C1) NRM Mo 2593d, C2) NRM Mo2593e. D) Small accumulation of disarticulated shells of Oxytoma sp., NRM Mo1185a.
E) Astartiid sp., E1) an inner shell surface of a large specimen showing deeply impressed anterior adductormuscle scar, NRMMo1185b, E2) internalmould of a small specimen showing cren-
ulated ventral shell margin, NRMMo167816b. F) Goniomya sp., NRMMo167817c.

239K. Hryniewicz et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 436 (2015) 231–244
13C-depleted composition of all three investigated lithologies shows
that the authigenic carbonates were formed under the influence of the
anaerobic oxidation of methane (AOM; Boetius et al., 2000). The Late
Fig. 9. Fossils from the Late Tithonian black limestones. A) Craspedites okensis, Mo1226, A1) late
Mo1319. D) Nucinella sp., NRM Mo 152372, D1) left-lateral view, D2) dorsal view. E) Nuculid s
taxodont dentition, NRMMo1194a. F)Dacromya sp., NRMMo1301a, F1) left-lateral view showi
Mo167815a. H) Arcoid sp., NRMMo1309a. I) Pseudolimea sp., internal mould, NRM Mo 1215b.
Oxfordian–Early Kimmeridgian calcareous sandstones were formed
mostly by cementation of quartz sand in authigenic seep carbonate
(Fig. 4). Recent seep carbonates are mostly formed of fibrous aragonite
ral view, A2) ventral view. B)Hudlestoniella undulata, NRMMo1182. C) Solemyid sp., NRM
p., E1) right-lateral view, NRMMo152374, E2) internal view of the dorsal margin showing
ng the external ornament, F2) right-lateral view of an internal mould. G)Malletiid sp., NRM
J) Buchia obliqua, NRM Mo1205. K) Arcticid sp., NRM Mo1313.



Fig. 10. Fossils from the latest Berriasian–Early Valanginian sandy limestones. A) Hudlestoniella pusilla, NRMMo 149380a-1. B) Maturifusid sp., NRMMo 149371c-1. C) Bullinid sp., NRM
Mo 1189, C1) apertural view, C2) apical view. D) high-spired gastropod sp., NRM Mo 167817a. D1) whole specimen, D2) younger teleoconch view. E) Malletiid sp., NRM Mo 14929a.
F) Protobranch sp. A, NRM Mo 1198. G) Protobranch sp. B, NRM Mo 1199a, G1) left lateral view, G2) dorsal view. H) Buchia cf. inflata, NRM Mo 1206, H1) left-lateral view, H2) dorsal
view, H3) right-lateral view, H4) anterior view. I)Oxytoma sp., NRMMo14929b. J)Camptonectes sp., plasticine cast, NRMMo1218. K)Astartiid sp., NRMMo149380b. L)Heterodont bivalve
sp., L1) right-lateral view of a delaminated valve, NRM Mo 149380c, L2) left lateral view of an internal mould, NRM Mo 149497. M) Rhynchonellide brachiopod sp., NRM Mo 149572.
N) Terebratulide brachiopod, NRM Mo 102390.
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(e.g. Aloisi et al., 2000, 2002; Teichert et al., 2005), which usually forms
when marine sulphate is present (e.g. Bayon et al., 2009). Calcite is less
commonly reported from Recent seep carbonates (Reitner et al., 2005).
In contrast, fossil seep carbonates are predominantly calcitic, as fibrous
aragonite is not stable during burial, although its former presence is
often reconstructed based on ghost textures (e.g. Savard et al., 1996;
Peckmann et al., 2007; Kiel and Peckmann, 2008). Although our XRD in-
vestigation reveals that the Novaya Zemlya seep carbonate is now cal-
cite, the carbonate cementation of pore space in calcareous sandstones
and the preservation of aragonitic mollusc shells suggest that the intial
mineralogy of this phasewas aragonite. The character of fibrous carbon-
ate cement filling cavities within fossils (Fig. 4H) is typical for an arago-
nite precursor (Aïssaoui, 1985). The textures suggest homogenous
cementation of the quartz sand, rather than the formation of concre-
tions (e.g. Peckmann and Thiel, 2004; Kaim et al., 2013; Kiel et al.,
2013) or tubular conduit structures (e.g. Campbell et al., 2008; Krause
et al., 2009), characteristic of localized AOM reactions. The carbon
isotope values are very depleted (Table 1, Fig. 7) and this indicates
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precipitation during active seepage of methane (e.g. Campbell et al.,
2002; Campbell, 2006). The sediment was probably charged with gas,
and some cavities within fossils were likely also partially filled
with gas, as shownby asymmetrical cementfills (Fig. 4H). This is all sug-
gestive of diffusive rather than advective seepage (e.g. Campbell, 1992;
Peckmann et al., 2009; Haas et al., 2010; Natalicchio et al., 2015).

The Late Tithonian black limestones have more complex carbonate
fabrics. They are very similar to those from latest Jurassic–earliest Creta-
ceous hydrocarbon seep carbonates from Spitsbergen, Svalbard
(Hryniewicz et al., 2012). Microspar and peloidal carbonate most likely
represent cemented fine grained and peloidal sediment, respectively,
with the latter possibly additionally winnowed along fluid flow paths.
Such peloidal carbonates are especially common in fossil seep sites
(e.g. Beauchamp and Savard, 1992; Krause et al., 2009; Kiel et al.,
2013). Nodular fabrics, seen in some carbonate blocks (Fig. 4A), suggest
localized centers of AOM (e.g. Peckmann and Thiel, 2004). The origin of
the cavities filled with cements was probably related to episodes of in-
creased acidity (Himmler et al., 2011), either by the aerobic oxidation
of methane or by sulphide oxidation. The first process can be linked to
exposure of the carbonate to the bottom water, for example due to an
erosional episode (e.g. Matsumoto, 1990). Some corrosion surfaces, es-
pecially those without mineral coatings, might have been associated
with this process. Sulphide oxidation can be associated, for example,
with development of Beggiatoa or Thioploca bacterial mats (Himmler
et al., 2011). These bacteria are able to oxidize large volumes of
sulphide-charged sediment using free or bound oxygen, leading to
lowered pH in the underlying sediments and corrosion of authigenic
carbonates (Joye et al., 2004; Cai et al., 2006). The corrosion surfaces
in the Novaya Zemlya carbonates associated with black oxyhydroxide
coatings may have been the result of this process. Cavities resulting
fromeither of these processeswould have beenfilledwith botryoidal car-
bonate, as AOMbecame locally active again. The δ13C isotope values, rang-
ing from−41.3‰ to−16.7‰ (Table 1, Fig. 7) suggest precipiation under
the influence of methane and diverse fluid circulation patterns, with the
more depleted values representing phases formed under a constant sup-
ply of methanogenic carbon, possibly closer to active fluid conduits (e.g.
Campbell et al., 2002; Peckmann et al., 2003; Campbell et al., 2008;
Himmler et al., 2008). The more negative values indicate biogenic rather
than thermogenic methane (Peckmann and Thiel, 2004). The heavier
values may imply precipitation from a small pool of carbonate in sealed
cavities, or precipitation influencedby sedimentary organicmatter, heavi-
er hydrocarbons or significantmixingwith seawater bicarbonate (e.g. Kiel
and Peckmann, 2008).

The latest Berriasian–Early Valanginian sandy limestones have a fairly
simple paragenetic sequence, roughly comparable to that of the Late
Oxfordian–Early Kimmeridgian calcareous sandstones (Fig. 6). Fine
quartz sand and related fecal peloids and fossils are cemented by calcitic
micrite, which is likely to have initially been aragonite, diagenetically
recrystallized to calcite. The homogenous rock textures are suggestive of
diffusive rather than advective flux, with no localized centres of AOM,
or formation of fluid conduits. Microbial clotted micrite (Fig. 6E), filling
some fossils, is fairly common in other fossil seep carbonates (e.g. Kiel
and Peckmann, 2007, 2008; Kuechler et al., 2012; Kiel et al., 2013) and
most likely represents cemented organic membranes (Flügel, 2004).
The micrite is accompanied by fans of fibrous cements, possibly former
aragonite (Fig. 6F), suggesting rapid precipitation of carbonate, perhaps
due to active AOM within hydrocarbon-filled shells. The carbon isotopes
are much less depleted than in the other Novaya Zemlya seep lithologies,
with values roughly between −22‰ and −26‰ δ13C (Table 1, Fig. 7).
These values can be interpreted in three ways. First, they could have
been associated with oxidation of heavier hydrocarbons (e.g. Kiel and
Peckmann, 2007), as the δ13C values between −15‰ and −25‰ δ13C
are similar to the values found in carbonates formed at oil seeps (e.g.
Joye et al., 2004). However, the absence of impsonite (biodegraded oil;
e.g. Peckmann et al., 2001) argues against an oil seepage origin. The sec-
ond and third explanation could be the oxidation of either thermogenic
or biogenic methane (Sackett, 1978; Schoell, 1988; Whiticar, 1999). As-
suming that methane was involved in the formation of the latest
Berriasian–Early Valanginian sandy limestones, then the δ13C composi-
tion of around−20‰ to−25‰ suggests significant mixing of methano-
genic carbon with heavier source, such as seawater bicarbonate
(Peckmann and Thiel, 2004).

5.2. Ecological structure

The Novaya Zemlya seep boulders contain a fauna which – based
on the current state of knowledge – is mostly comparable with that
of non-seep Jurassic–Early Cretaceous shelf environments (e.g.
Zakharov, 1966, 1970; Duff, 1978; Fürsich, 1982; Kelly, 1984, 1992)
and represents the ‘background’ fauna, which have taken advantage
of the enhanced nutrient availability and increased amount of hard
substrate for attachment at seep (e.g. Dando, 2010; Kiel, 2010). Out
of the 33 species identified in the material (Table 2), only one can
be currently interpreted as being closely tied to the seep environ-
ment. This is the seep-restricted hokkaidoconchid gastropod in the
Late Oxfordian–Early Kimmeridgian calcareous sandstones identi-
fied by Tullberg (1881) as Cerithium elatum (Fig. 8C) (e.g. Kaim
et al., 2008, 2009; Kiel et al., 2013). The only chemosymbiotic bi-
valves found in the Novaya Zemlya material are a solemyid bivalve
and Nucinella from the Late Tithonian black limestones (e.g. Stewart and
Cavanaugh, 2006; Oliver and Taylor, 2012). These taxa are, however, not
restricted to seep environments and are found in normal marine settings
with high redox potential (e.g. Reid, 1980; Taylor and Glover, 2010;
Glover and Taylor, 2013). Similarly structured seep faunas, with a
large number of ‘background’ species and few seep-restricted species,
are also found in the geographically and stratigraphically near Late
Tithonian–latest Berriasian seeps from Svalbard (Hammer et al.,
2011). As these formed in shallow water (Hryniewicz et al., 2015) and
a paucity of seep-restricted species is a general feature of shallow-
water vent and seep faunas (Dando, 2010 and references therein), a sim-
ilar palaeobathymetric setting is likely to have influenced the structure of
Novaya Zemlya seep boulder faunas. The Svalbard seeps contain only four
seep-restricted species, out of over 50: a lucinid and thyasirid bivalves
(Hryniewicz et al., 2014), hokkaidoconchid gastropods, and possible
‘vestimentiferan’ worm tubes (Hammer et al., 2011). Except for the
hokkaidoconchids, these taxa are unknown from the Novaya Zemlya
seep boulders, which is intriguing, considering they could have
formed in relative proximity (Hryniewicz et al., 2015, fig. 8). It
could be that the paucity of seep-restricted species in the Novaya
Zemlya seep fauna was also to some extent a function of
palaeogeography, as Recent Arctic seep (e.g. Gebruk et al., 2003) and
vent faunas (e.g. German et al., 2012) also contain few obligate species,
for reasons that are yet not well understood.

5.3. Relationships with other Late Mesozoic seep faunas

There are a few other Mesozoic seeps known from the Boreal area.
The palaeobiogeographically closest are the Late Tithonian–latest
Berriasian seeps from Svalbard (Hammer et al., 2011; Wierzbowski
et al., 2011). Cretaceous Boreal occurrences include the Barremian
Kuhnpasset seeps from Wollaston Forland, East Greenland (Kelly
et al., 2000) and the Albian Ellef Ringnes and Prince Patrick Islands
seeps from Arctic Canada (Beauchamp and Savard, 1992), both younger
than the latest Berriasian–Early Valanginian occurrence reported here.
Therefore, the Novaya Zemlya seep boulders record one of four current-
ly known areas of seepage from the Mesozoic high northern latitudes,
with the Late Oxfordian–Early Kimmeridgian calcareous sandstone
boulders being the oldest known examples from this area. Jurassic
seeps are in general not well known and there are currently only
seven other sites of this age recognized. Three of these are Early Jurassic:
the Sinemurian Kilve seeps, UK (Alisson et al., 2008), the Sinemurian
seep from Seneca, Oregon, USA (Peckmann et al., 2013) and the
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Toarcian Los Molles seep in Argentina (Gómez-Perez, 2003). The
remaining four are Late Jurassic. These are the Oxfordian seeps in
Beauvoisin, southern France (Gaillard et al., 1992; Kiel et al., 2010;
Gaillard et al., 2011), the Tithonian seep in Alexander Island,
Antarctica (Kelly et al., 1995; Kaim and Kelly, 2009), the Tithonian
seeps in Paskenta and NW Berryessa, California, USA (e.g. Campbell
et al., 2002; Kiel et al., 2008b; Jenkins et al., 2013), and the Late
Tithonian seeps of Svalbard. The Cretaceous seeps are more common
than those of the Jurassic and a fair number of both Early and Late
Cretaceous aged seeps have been found (e.g. Campbell, 2006; Kiel and
Peckmann, 2008; Kiel, 2010; Kaim et al., 2013; Kiel et al., 2013).

The highly diverse fossil molluscan fauna from the Late Jurassic–
Early Cretaceous Novaya Zemlya seep boulders is composed mostly
of ‘background’ taxa. Some of these taxa had rather narrow
palaeobiogeographical ranges. This is especially true for the arcticid bi-
valves, Dacromya and the gastropod Hudlestoniella (Table 2), which
are shared only with the geographically and temporarily adjacent
Svalbard seeps and Boreal ‘normal’marine sediments, and are unknown
from Late Mesozoic deep water seeps (Hryniewicz et al., 2014 and
references therein). Some ‘background’ taxa show preference towards
seep environments. For example, the chemosymbiotic protobranch bi-
valve genus Nucinella, which occur in Late Tithonian bituminous lime-
stones, is known from some of Triassic?–Cretaceous seep sites
worldwide, for example in fairly deep-water Late Cretaceous (Campa-
nian) seeps in Hokkaido (Amano et al., 2007) and in Early Cretaceous
(Valanginian–Albian) seeps in California (Kaim et al., 2014). The
eucyclid gastropods, which are present in the Late Oxfordian–Early
Kimmeridgian calcareous sandstones, are shared with Late Jurassic–
Early Cretaceous (Tithonian–Valanginian) deep-water seep faunas in
California (Kiel et al., 2008b). Those ‘background’ taxa were likely to
occur in Late Mesozoic seep faunas worldwide, as their respective fam-
ilies are rather common constituents of the deep-water faunas and had
broad palaeobiogeographic ranges (e.g. Oliver and Taylor, 2012; Ferrari
et al., 2014). Interestingly, the latest Berriasian–Early Valanginian sandy
limestones lack the seep-restricted dimerelloid brachiopod Peregrinella,
which are very common in some Late Berriasian–Early Hauterivian
seeps elsewhere (Kiel et al., 2014). This brachiopod is also absent from
Late Berriasian seeps in Svalbard (Hammer et al., 2011). This argues
against the spread of Peregrinella towards the high-northern latitudes
(Biernat, 1957).

The only seep-restricted species in theNovaya Zemlya seep boulders
is the hokkaidoconchid gastropod. Hokkaidoconchids range from the
Late Jurassic to the Eocene–Oligocene (Gill et al., 2005; Kaim et al.,
2014). The oldest known species is Hokkaidoconcha novacula from the
Late Jurassic (Oxfordian) Beauvoisin hydrocarbon seep site (Kiel et al.,
2010), with ‘Cerithium elatum’ from Novaya Zemlya (this study) being
coeval or slightly younger. Other Late Jurassic species include
Hokkaidoconcha occidentalis from the Paskenta Tithonian seep (Kiel
et al., 2008b; Kaim et al., 2014) and Hokkaidoconcha hignalli from
the Tithonian Gateway Pass Limestone of Antarctica (Kaim and Kelly,
2009). Poorly preserved high-spired gastropods identified as
hokkaidoconchids have also been found in Late Tithonian seeps from
Spitsbergen, Svalbard (A. Kaim, unpublished data). Thus, out of five
Late Jurassic seep sites known, hokkaidoconchid gastropods occur in
four, or possibly five of them. Broad palaeobiogeographic ranges are
typical for fossil seep molluscs (e.g. Jenkins et al., 2013; Kiel, 2013;
Kaim et al., 2014). By their first appearance in the Late Jurassic,
hokkaidoconchids are already widely distributed and occur in geo-
graphically disparate basins; this suggests a pre-Late Jurassic origin
and dispersal for the hokkaidoconchids (cf. Johnson et al., 2010).

6. Conclusion

The Novaya Zemlya seep boulders provide a new record of the an-
cient hydrocarbon seepage in the Boreal area. The boulders represent
some of the few Jurassic seep rocks from Mesozoic high latitudes, and
Late Oxfordian–Early Kimmeridgian calcareous sandstones record the
oldest known seep environment in the Boreal realm. The boulders con-
tain common fragments of sunkendriftwood and a very diverse fauna of
at least 32 species, the greatmajority of which are ‘background’ species,
with no special preference towards the seep environment. Some of
those species, for example the gastropod Hudlestoniella, are high-
Boreal elements and are unknown from deep-water Late Mesozoic
seeps world-wide. Others, such as the eucylid gastropod species, belong
to deep-water group which had broad palaeobiographic range and
occurred in other Late Mesozoic seeps, also including those from deep
water. The only species which is currently interpreted as seep-
restricted is a hokkaidoconchid gastropod, accompanied by a possible
second seep-restricted abyssochrysoid gastropod. Faunas structured
similarly to those of Novaya Zemlya seep boulders are known from
palaeogeographically nearby latest Jurassic–earliest Cretaceous shallow
water seeps from Svalbard, which also contain few seep-restricted spe-
cies, although these are not the same as those in the Novaya Zemlya
seeps.
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