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A magma ocean origin of Earth's degree-2 mantle convection

Reidar G. Trgnnes, Centre for Earth Evolution and Dynamics (CEED) & Natural History Museum, Univ. of Oslo, rtronnes@uio.no

The Earth's residual geoid [1,2] and free-air gravity [3] reveal a
degree-2 mantle convection pattern with antipodal columnar
upwelling above the two large low S-wave velocity provinces
(LLSVPs) and sheet-like downwelling in a longitudinal belt (about
105 °E, 75 °W) through the Arctic, east Asia, Australia, Antarctica
and the Americas. Fluid dynamic modelling of magma ocean (MO)
flow in rotating planets with variable gravitational acceleration (g)
yields downwelling along the polar axis with maximum g and
upwelling in the equatorial plane with minimum g [4,5].

The higher compressibility of MO liquid compared to liquidus
bridgmanite (bm), and the strong partitioning of Fe to the MO liquid
and Mg to bm, resulted in bm-melt density cross-over and initial
accumulation of MgSiO;-dominated bm in the 1600-2000 km depth
range in the Earth [e.g. 6]. The MO convection pattern probably
caused a discontinuous spherical shell of bm, breached by columnar
downwelling along the polar axis and planar equatorial upwelling.
Whereas the MO above the neutral buoyancy level might have
solidified in 5-50 My [7,8], a well-insulated basal MO (BMO) was
likely long-lived, possibly extending into the Proterozoic or
Phanerozoic [6].

Spherical shell convection modelling with a solid, high-viscosity
mantle, and with combined internal and bottom heating, tends to
yield sheet-like downwelling and columnar upwelling [e.g. 9]. The

large viscosity increase associated with the the solidification of the
major part of the MO (e.g. the upper 2000 km or 81 vol% of the
original MO), might therefore change the convective pattern into the
current geometry with two antipodal upwelling columns close to the
equatorial plane and a sheet-like longitudinal downwelling, as
observed today.

A discontinuous and neutrally buoyant mid-lower mantle shell of
early crystallised and Fe-poor bm with high viscosity can be
convectively aggregated and repositioned into bm-enriched ancient
mantle structures (BEAMS) [10-12], located around the periphery of
the ascending LLSVP-rooted mantle columns. Deep partial melting
in plumes originating at the top of the BMO might add further Fe-
poor bridgmanitic residues to the BEAMS.

Chemical diffusion of SiO, from the core to the early MO and later
BMO, in exchange for FeO and Fe,O; in the opposite direction
[6,13], would also increase the bulk mantle Si/(Mg+Fe), Mg/Fe and
bridgmanite/ferropericlase ratios, prolonging the crystallisation of
Fe-poor bm, and thereby increasing the proportion of refractory
material. The high-viscosity BEAMS will, in combination with the
Earth's rotation, stabilise and sustain the degree-2 mantle convective
structure. Dense layers of Fe-rich BMO-cumulates might be swept
passively into the root-zones of the ascending LLSVP-flow at a late
stage when most of the BMO had solidified.

References: [1] Hager et al. 1985, Nat; [2] Steinberger & Torsvik 2010, GGG; [3] Ishii & Tromp 1999, Sci; [4,5] Maas & Hansen 2015, JGR & 2019, EPSL;
[6] Trannes et al. 2019, Tectonoph; [7] Elkins-Tanton 2008, EPSL; [8] Kruijer et al. 2020, EPSL,; [9] Bercovici et al. 1989, Sci; [10] Manga 1996, GRL;

[11] Ballmer et al. 2017, Nat Geosci; [12] Gulcher et al. 2020, EPSL.
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Mantle domains and structure Degree-2 convection
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Convection modelling of MO crystal settling in rapidly Maas & Hansen,

rotating planets with differential gravitational fields 2015, EPSL

Terrestrial planet without bm-melt neutral buoyancy (my)y,et < Myenys)
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Change from mostly liquid to mostly solid mantle: .

May cause change from: columnar polar downflow
with equator-plane upwelling

Terrestrial planet with bm-melt neutral buoyancy (myj;uet > Myenys)
Crystallising €.d. the Earth Solid, convecting

magma ocean mantle

to: longitudinal sheet-like
downflow with columnar
antipodal upwelling in the
equatorial plane.
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Equatorial sections, illustrating the
current degree-2 convective structure
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A solar analogue example: The simple meridional flow in the convective zone is similar to
the inferred degree-2 convection in the early terrestrial MO

Solar meridional flow (Gizon et al., 2020, Sci.)

One simple cell in each hemisphere, the
right hand visualisation shows the
northern hemisphere cell

columnar, along
rotation axis

A similar degree-2 convection is
likely in the early terrestrial magma ocean
(e.g. Maas & Hansen 2019, EPSL)



A lunar analogue example: MO crystal accumulation influenced by an asymmetric gravitational field 9
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Moon orientation adjustment

The mass balance and orientation of the Moon were
modified by the oldest and largest S.Pole-Aitken Basin
(SPAB) and the nearside impact craters and mare basalt
magmatism. The removal of light anorthosite crust from SPAB has
exposed parts of the mantle (Li et al. 2019, Nat.). The combined
changes are reflected by the current sub-Earth point position.
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Metal-silicate exchange equilibrium, leading to core - MO/BMO chemical exhange during cooling 10
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Because the chemical equilibrium:

2 Femet + SjO,si1 = Sjmet + 2 FeOsi
is displaced towards the product side (right) with
increasing T and reversed with decreasing T

2Fe+0,=2FeO0 (IW)
minus: Si+ O, =Si0, (SS)

gives:
or: 2Fe+SiO,=Si+2FeO

Cooling of core and magma ocean (MO)

— core-MO chemical exchange

- FeO to the core
- SiO,, to the MO (and BMO)

Additional pressure-effect — above 25 GPa
Armstrong and Frost (2019, Nature)

Disproportionation of FeOMO at p > 25 GPa promotes
high fo, in the MO, combined with core segregation:

3FeO = 2FeO,; + [Fe

components'in the MO liquid metal segregating
and sinking to the core




Pressure-induced self-oxidation of a magma ocean, accompanied by Fe-metal segregation 11
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O and Si in Fe-alloys

Cooling =y core-BMO chemical exchange
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System: Fe-Mg-O
metal-ferropericlase equilibrium

Solvus closure with increasing p and T
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System: Fe-Si-O
Solubility of O and Si in Fe-alloy
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Estimated core compositions

Trgnnes et al. 2019,
Tectonophys., Table 3
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The E'-layer compositional gradient (figure above), used as input into Stage-2
of the mass balance model below, is precisely constrained by the KHOMC
seismic model (Kaneshima 2018, PEPI) combined with mineral physics data
(Badro et al. 2014, PNAS; Brodholt & Badro 2017, GRL). See pages 13-14.

Mass balance modelling (Trennes et al. 2019, Tectonophys., Table 3)

Step 1: protoC + earlyMO = convC + pyrolitic MO (C: core, total volumes)

Step 2: upper convC + BMO = E'-layer + mod.ImM (modified lowermost Mantle)

34 vol% 28 vol%

31 wt% of core 34 wt% of mantle

Composition. wit% (normalised to 100% sumns)

mol% minerals

mol-ratio

8i0, TiO» ALO; Cr0O; NiO MnO FeO MgO CaO Na,O  bm  fp cpv  bm/p
earlyMO. adjust. 42.0 020 429 036 024 013 124 366 339 035 742 196 62 358
pyroliteMO. cale. 449 021 443 037 025 013 805 378 350 036 784 153 63 5.1
modImM, cale. 487 021 468 040 026 015 1.80 397 373 038 833 100 66 83|




Outermost stagnant E'-layer? Depth below CMB (km) 14
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Seismology

Lay & Young, 1990

Garnero et al., 1993

Helffrich & Kaneshima, 2010

Kaneshima & Helffrich, 2013

Kaneshima & Matsuzawa, 2015

Kaneshima, 2018

Irving et al., 2018: Adiabatic outermost core

Models

Buffet, 2010

Buffet & Seagle, 2010
Gubbins & Davies, 2013
Hernlund & McNamara, 2015
Brodholt & Badro, 2017




Outermost stagnant E'-layer? 15

gradationally stratified, low Vg - low p
Caused by core-BMO interaction?

10500

E'-layer chemical characteristics, material properties

poses a long-standing conundrum, apparently solved by ME
Brodholt & Badro (2017, GRL): =
—_
Each of the light element candidates (Si, O, S, C) o |- PREM
reduces p and increases Vg (Or Vp) - E-CMB----romeemmmeeemme e
9500: Outermost core condition, CMB ]
BUT: | | Brodholt & Badro (2017, GRL) ON
O reduces p more and increases Vg less than Si. — "
84001 )
Therefore:
E'-layer with elevated O and reduced Si relative to <
the convecting core solves the conundrum E@
—
The E'-layer of the mass balance model (page12, upper right
figure and stage-2 model input) is precisely constrained by the 8000F
KHOMC seismic model (Kaneshima 2018, PEPI) and the mineral
physics data (Badro et al. 2014, PNAS; Brodholt & Badro 2017, GRL)

Fe > (Conc, wt% 10




