Exercises

1. Clapeyron slope - general features. Although the indicated chemical reactions (below) are highly schematic, they must in principle be balanced. Subscripts $\mathbf{R}_{\mathbf{R}}$ and $_{\mathbf{P}}$ indicate reactants and products, respectively. A reaction written as e.g. Solids $_{\mathrm{R}}=$ Solids $_{\mathrm{P}}$, might have one, or more than one, phase on each side.
a. Relate $\mathrm{dT}, \mathrm{dp}, \Delta \mathrm{S}$ and $\Delta \mathrm{V}$ by the Clapeyron equation (write the equation. Develop the Clapeyron equation (mathematically) from the expression for $\Delta \mathrm{G}=\Delta \mathrm{E}+\mathrm{p} \Delta \mathrm{V}+\mathrm{T} \Delta \mathrm{S}$, based on the andalusite to kyanite transition example in the figure, below.

$$
\begin{aligned}
& \text { ion for } \\
& \begin{array}{l}
\text { in } \\
\text { nn } \\
d p \Delta V=d T \Delta S \\
d p / d T=\Delta S / \Delta V
\end{array} \\
& \Delta \mathrm{G}=\Delta \mathrm{E}+\mathrm{p}_{1} \Delta \mathrm{~V}-\mathrm{T}_{1} \Delta \mathrm{~S}=0 \\
& \Delta \mathrm{G}=\Delta \mathrm{E}+\left(\mathrm{p}_{1}+\mathrm{dp}\right) \Delta \mathrm{V}-\left(\mathrm{T}_{1}+\mathrm{dT}\right) \Delta \mathrm{S}=0
\end{aligned}
$$

Subtracting the upper from the lower equation

b. State or discuss the signs (positive or negative) for $\Delta \mathrm{S}$ and $\Delta \mathrm{V}$ of the schematic reactions 1-3 (below). Discuss specifically why $\Delta \mathrm{V}$ is likely to change more than $\Delta \mathrm{S}$ with increasing pressure in reactions 2 and 3 .

Always: $\Delta \mathrm{V}<0$
Commonly $\Delta \mathrm{S}$ is also negative, but sometimes the high-presure phase(s) has/have higher entropy than the the reacting low-low pressure phases
(e.g. $S_{\text {sillimanite }}>S_{\text {andalusite }}$ and $S_{\text {bridgmanite }}>S_{\text {akimotoite }}$).
2. Melting reaction: Solids $_{R}=$ Melt $_{\mathbf{P}}$

Always: $\Delta \mathrm{S}>0$
Normally $\Delta \mathrm{V}$ is also positive, but melts are more compressible than solids, leading to steadily decreasing $\Delta \mathrm{V}$ with increasing p within the stability range of a certain subsolidus mineral assemblage. Exceptionally, this may lead to negative ΔV and an associated melt-solid density cross-over.
3. Devolatilisation reactions: $\operatorname{Solids}_{R}=\operatorname{Solids}_{\mathbf{P}}+$ fliud/vapour $^{\text {a }}$
e.g. $\mathrm{KAl}_{2} \mathrm{Si}_{3} \mathrm{AlO}_{10}(\mathrm{OH})_{2}($ muscovite $)+\mathrm{SiO}_{2}($ quartz $)=\mathrm{KAlSi}_{3} \mathrm{O}_{8}\left(\mathrm{~K}\right.$-felspar) $+\mathrm{Al}_{3} \mathrm{SiO}_{5}($ kynaite $)+\mathrm{H}_{2} \mathrm{O}$ (vapour)
or: $\mathrm{CaCO}_{3}($ calcite $)+\mathrm{SiO}_{2}$ (quartz) $=\mathrm{CaSiO}_{3}$ (wollastonite) $+\mathrm{CO}_{2}$ (vapour)
Always: $\Delta \mathrm{S}>0$
$\Delta \mathrm{V}$ is positive at low pressure, but fluids are very compressible, leading to steadily decreasing $\Delta \mathrm{V}$ with increasing p within the stability range of a certain subsolidus mineral assemblage. Exceptionally, this may lead to negative ΔV and an associated fluid-solid density cross-over.
2. Phase relations in the $\mathbf{M g S i O}_{3}$ system. The phases with compositions other than $\mathbf{M g S i O} \mathbf{3}_{3}$ are listed in the grey box. The phase fields are marked with phase names, as well as abbreviations (bold letters).
a. Why do the melting curves have more curvature (with the convex side towards the melt field) than the majority of the solid-solid phase transitions?
Melts are generally more compressible than coexisting solids. Because $\Delta \mathrm{S}$ of a melting reaction (solid \rightarrow melt) is always positive and changes relatively little with pressure, the Clapeyron slope $\mathbf{d p} / \mathbf{d T}=\Delta \mathbf{S} / \Delta \mathbf{V}$ will increase with increasing p as $\Delta \mathrm{V}$ decreases (for the most common situation of $\Delta \mathrm{V}>0$). If $\Delta \mathrm{V}$ reaches 0 and turns negative the melting curve will "curve around" and attain a negative dp/dT slope.
b. Which of the two phases LT-cpx and $\mathbf{o p x}$ is most compressible? $\mathbf{o p x}$ (same explanation as above)
c. Which of the two phases $\mathbf{m j}$ and $\mathbf{b m}$ has the the largest molar volume? $\mathbf{m j}$ (because mj is the low-p phase)
d. Which of the phases ak and $\mathbf{b m}$ has the largest molar volume? ak (because ak is the low-p phase)
e. Use the Clapeyron relation to deduce the phase in each of the following two pairs with the largest entropy? $\mathbf{m j}$ or $\mathbf{b m}: \mathbf{m j} \quad \mathbf{a k}$ or $\mathbf{b m}: \mathbf{b m} \quad$ Explain briefly your reasoning: If you have wrong answers in c and d , you should get $\mathbf{b m}$ and $\mathbf{a k}$, respectively.
The reactions $\mathbf{m j} \rightarrow \mathbf{b m}$ and $\mathbf{a k} \rightarrow \mathbf{b m}$ have $\mathbf{\Delta V}<\mathbf{0}$ (3c-d, because they occur in response to increasing p at constant T). The phase diagram shows that the first reaction has $\mathbf{d p} / \mathbf{d T}=\Delta \mathbf{S} / \Delta \mathbf{V}>\mathbf{0}$ and that the second reaction has $\mathbf{d p} / \mathbf{d T}=$ $\Delta \mathbf{S} / \Delta \mathbf{V}<\mathbf{0}$. The reactions $\mathbf{m j} \rightarrow \mathbf{b m}$ and $\mathbf{a k} \rightarrow \mathbf{b m}$ have therefore negative and positive $\Delta \mathrm{S}$, respectively.
f. Use the phase rule to find the variance (F) at the points $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d and along the phase boundaries $\mathrm{a}-\mathrm{b}$ and $\mathrm{c}-\mathrm{d}$.

For each of the six cases you should specify the components (C) and phases (P) - not just their numbers.
Note: For a valid phase rule analysis of variance, the univariant phase boundaries (e.g. a-b) cannot not include invariant end points, like a and b.
a: C: $2: \mathrm{MgO}, \mathrm{SiO}_{2}$
P: 4: wd, rw, st, ak
b: C: $2: \mathrm{MgO}, \mathrm{SiO}_{2}$
P: 4: wd, st, ak, mj
F: 4-4 = 0, invariant
F: 4-4 $=0$, invariant
a-b: C: 2: $\mathrm{MgO}, \mathrm{SiO}_{2}$
P: 3: wd, st, ak
F: 4-3 = 1, univariant
c: C: $1: \mathrm{MgSiO}_{3}$
d: C: $1: \mathrm{MgSiO}_{3}$
P: 3: mj, bm, L
c-d: C: $1: \mathrm{MgSiO}_{3}$
P: 2: mj, bm
P: 3: mj, ak, bm
F: 3-3 $=0$, invariant
F: 3-2 = 1, univariant

3. Melting phase relations in the system $\mathbf{M g O}-\mathbf{S i O}_{2}$ - se further descriptions in the grey box.
a. Give the phase assemblages (without phase proportions and compositions, use the abbreviations) for the numbered field in the light blue box.
b. Give (blue box) the phase proportions and liquid compositions (if applicable) for bulk compositions with 10 and 90% SiO_{2} at the indicated temperatures. You can give the liquid compositions as L_{X}, where X is $\mathrm{mol} \% \mathrm{SiO}_{2}$.
c. Assume that a typical peridotite in this simple model system has 60% olivine and 40% orthopyroxene. Give the approximate model composition in $\mathrm{mol} \% \mathrm{SiO}_{2}$ of such a peridotite: $\mathbf{4 0 \mathrm { mol } \%}$
d. Mark the initial (invariant) melt compositions of such a model peridotite at $1 \mathrm{bar}, 6 \mathrm{GPa}$ and 24 GPa with small rings.
e. How does the invariant melt compositions of a peridotite in this system change with increasing pressure from 1 bar to 24

GPa? The melt composition becomes more magnesian.

4. General features of melting curves, exemplified by an imaginary one-component system with three solid phases α, β and γ. The left figure panel shows the molar volume \boldsymbol{V} for melt and solids (along the melting curve) as a function of pressure.
Melting reactions (solid \rightarrow liquid) have positive heat of fusion (subscript m for melting), $\Delta \mathrm{H}_{\mathrm{m}}=\Delta \mathrm{E}+\mathrm{p} \Delta \mathrm{V}_{\mathrm{m}}>\mathbf{0}$. The relation $\Delta \mathrm{G}_{\mathrm{m}}=\Delta \mathrm{H}_{\mathrm{m}}-\mathrm{T} \Delta \mathrm{S}_{\mathrm{m}}=0$ at equilibrium (at the melting curve) requires that $\Delta \mathbf{S}_{\mathrm{m}}>\mathbf{0}$. Make the simplifying assumption that $\Delta \mathbf{S}_{\mathrm{m}}$ is constant in the problem below.
a. Draw $\Delta \mathrm{V}_{\mathrm{m}}$ as a function of pressure in the middle panel, using the same relative scale for the $\Delta \mathrm{V}_{\mathrm{m}}$-panel as for the V-panel and your mm-ruler for measurements.
b. Draw the complete p-T phase diagram in the right panel. Put the melting curve-segments through the four fixed points marked by red circles at pressures of $30,50,100$ and 125 GPa . The $\alpha-\beta$ and $\beta-\gamma$ phase transitions should have Clapeyron slopes (dp/dT) of -5.0 and $+6.7 \mathrm{MPa} / \mathrm{K}$, respectively. Label the four phase fields.

c. Explain briefly why pT-melting curves are almost always convex towards the liquid field?

Because the melt is more compressible than the solids, which results in decreasing $\Delta \mathrm{V}_{\mathrm{m}}$ and therefore increasing $\mathrm{dp} / \mathrm{dT}=\Delta \mathrm{S}_{\mathrm{m}} / \Delta \mathrm{V}_{\mathrm{m}}$ with increasing p for each melting curve segment, representing one specific subsolidus assemblage
d. $\Delta \mathrm{V}_{\mathrm{m}}$ for very high pressure partial melting of multi-component peridotite is likely to become negative within certain depth intervals in the Earth's mantle. The preferential partitioning of Fe into melt will contribute to such a density crossover. During early Earth differentiation, late-stage melts from mantle magma ocean crystallisation and partial melts formed in very hot mantle plumes, rising from the core-mantle boundary, were therefore likely to accumulate at two different depth levels in the the Earth.
Give the two levels: $\mathbf{4 1 0} \mathbf{~ k m}$ (or slightly deeper) and the core-mantle boundary. I will also give 50% points for Moho, although that melt accumulation level is relevant for basaltic, rather than peridotitic melts.
and the corresponding depth ranges (very approximate) where peridotitic melt would sink (be negatively buoyant): $300-410 \mathrm{~km}$ and approximately lower $500-1000 \mathrm{~km}$ of the mantle.

5. Melting phase relations of fertile and depleted peridotite compositions.
a. Write the balanced chemical reactions for the following two subsolidus transitions:

1) plagioclase to spinel lherzolite in the system: $\mathrm{CaO}-\mathrm{MgO}-\mathrm{AlO}_{1.5}-\mathrm{SiO}_{2}$

$$
\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}+2 \mathrm{Mg}_{2} \mathrm{SiO}_{4}=\mathrm{MgAl}_{2} \mathrm{O}_{4}+\mathrm{CaMgSi}_{2} \mathrm{O}_{6}+2 \mathrm{MgSiO}_{3}
$$

2) spinel to garnet lherzolite in the system: $\mathrm{MgO}-\mathrm{AlO}_{1.5}-\mathrm{SiO}_{2}$

$$
\mathrm{MgAl}_{2} \mathrm{O}_{4}+4 \mathrm{MgSiO}_{3}=\mathrm{Mg}_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}+\mathrm{Mg}_{2} \mathrm{SiO}_{4}
$$

b. Based on the suprasolidus phase relations above, show the following approximate compositions (with correct relative positions) in the $\mathrm{CaO}-\mathrm{AlO}_{1.5^{-}}$and $\mathrm{NaO}_{0.5}-\mathrm{MgO}$-diagrams below (relative scale, only). Use small rings around the numbers, 1-4. A fertile lherzolite composition is indicated in both of the diagrams with a cross.

1. Low-degree melt formed near the solidus
2. Melt formed by more extensive melting
3. Residue from the low-degree melting
4. Residue from the extensive melting
c. What is the two-phase mineralogy and rock name for extensively melt-depleted residues at p < 6-8 GPa ?
(Note that melting will stop well before $\mathrm{p}=0$)
The two main minerals: $\underline{o l+o p x} \quad$ Rock name: harzburgite.

$\mathrm{AlO}_{1.5} \rightarrow$

Because the minor minerals clinopyroxene and the Al-rich phases, containing high Ca, Na (+most incompatible trace elem.) and Al (from the Al-rich phases) contribute most to the early melt fractions
6. The system $\mathrm{MgSiO}_{3}-\mathrm{Al}_{2} \mathrm{O}_{3}$ at 1773 K and 5-30 GPa. The small figure on the next page shows the entire system. Abbreviations and compositions: px, sp, qz, st, ga, wd, ak, bm and co: pyroxene, spinel (stoichiometric $\mathrm{MgAl}_{2} \mathrm{O}_{4}$), quartz and stishivite (both stoichiometric SiO_{2}), garnet, wadsleyite (stoichiometric $\mathrm{Mg}_{2} \mathrm{SiO}_{4}$), akimotoite, bridgmanite and corundum (at $27 \mathrm{GPa} \mathbf{8 0} \mathbf{~ m o l} \% \mathbf{A l}_{2} \mathbf{O}_{\mathbf{3}}, \mathbf{c o}_{\mathbf{8 0}}$), respectively.

$\mathrm{mol} \% \mathrm{Mg}_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12} \longrightarrow$	40	60	80	100
$\mathrm{mol} \% \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow 5$	10	15	20	25

a. The generalized garnet formula is $\mathrm{A}_{3} \mathrm{~B}_{2} \mathrm{C}_{3} \mathrm{O}_{12}$, where A, B and C are three distinct cation types. Give the cation valence and coordination numbers of O around the cation sites corresponding to the A, B and C cation sites.
A-site: valence: $2+$ coord.: 8 B-site: valence: $3+$ and majorite $2+\& 4+$ coord.: 6 C-site: valence: $4+$ coord.: 4
b. Explain briefly why garnet has $25 \mathrm{~mol} \% \mathrm{Al}_{2} \mathrm{O}_{3}$ as an upper limit, based on a simple crystallographic consideration. The Al^{3+} ions are only accepted into the octahedral (B) site, corresponding to $25 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ and $75 \% \mathrm{MgSiO}_{3}$
c. Give values for mol \% pyrope in the four empty boxes along the top compositional axis.
d. Give the the exact amount of Al, Si and Mg atoms per formula unit in the \mathbf{B}-site of the two majoritic garnet compositions g 1 and g 2 shown in the phase diagram. The sum of the B-site atoms must be 2 .
g1: Al: 1.2 Si: $0.4 \mathrm{Mg}: 0.4$
g2: Al: 1.6 $\quad \mathrm{Si}: \mathbf{0 . 2} \mathrm{Mg}: \mathbf{0 . 2}$
e. Give the compositions and proportions (\%) of the equilibrium phases for a bulk composition of $10 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ (abbreviated: $\mathbf{b c}_{\mathbf{1 0}}$) at 1773 K and the given pressures. Use numbers rounded off to one decimal. You should give the phase (mineral) compositions as $\mathrm{mol} \% \mathrm{Al}_{2} \mathrm{O}_{3}$ as subscripts to the phase abbreviation (e.g. px $\mathbf{x}_{\mathbf{2 0}}$).
Assume that the solid solution range for corundum at 27 GPa is $\mathbf{c o}_{\mathbf{8 0}}$ at 27 GPa
20.0 GPa: $100 \% \mathrm{ga}_{10}$
$26.5 \mathrm{GPa}: 78.1 \% \mathrm{bm}_{6.0}+21.9 \% \mathrm{ga}_{24.3}$
23.5 GPa: $\mathbf{6 2 . 5} \% \mathrm{ga}_{14.5}+37.5 \% \mathrm{ak}_{2.8}$
27.0 GPa: 95.9% bm $_{7.0}+4.1 \%$ co $_{80}$
f. At 1 GPa , the assemblage spinel+quarts (i.e. $\mathrm{MgAl}_{2} \mathrm{O}_{4}+\mathrm{SiO}_{2}$) lies outside /to the right of) the phase diagram.

Give $\mathrm{mol} \% \mathrm{Al}_{2} \mathrm{O}_{3}$ for this pure assemblage on the $\mathrm{MgSiO}_{3}-\mathrm{Al}_{2} \mathrm{O}_{3}$ join: $\mathbf{5 0}$ and the mol ratio of sp/qz: 1.
We are on the $\mathrm{MgSiO}_{3}-\mathrm{Al}_{2} \mathrm{O}_{3}$ join, where the spinel-quartz asseblage $\mathrm{MgAl}_{2} \mathrm{O}_{4}+\mathrm{SiO}_{2}$ corresponds to
$1 \mathrm{~mol}_{\mathrm{MgSiO}_{3}+1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3} \text {, i.e. to } 50 \mathrm{~mol} \% \mathrm{MgSiO}_{3}+50 \mathrm{~mol} \% \mathrm{Al}_{2} \mathrm{O}_{3}, ~(1)}$
Give the compositions and proportions (\%) of pyroxene and the combined sp+qz assemblage for for a bulk composition of $25 \% \mathrm{Al}_{2} \mathrm{O}_{3}\left(\mathrm{bc}_{\mathbf{1 0}}\right): \quad \mathbf{8 3 . 3 \%} \mathrm{px}_{20}+\mathbf{1 6 . 7 \%}(\mathrm{sp}-\mathrm{qz})_{50}$
g. Specify the actual components, \mathbf{C} and phases, \mathbf{P}, (not only the numbers of components and phases), and use the phase rule to investigate the variance (F) for the following bulk compositions (bc, with $\mathrm{mol} \% \mathrm{Al}_{2} \mathrm{O}_{3}$ as subscript) and pressures:

In the range $\mathbf{b c}_{\mathbf{4 - 1 0}}$ and $\mathbf{4 - 1 5} \mathbf{~ G P a}$
C: $\mathrm{MgSiO}_{3}+\mathrm{Al}_{2} \mathrm{O}_{3}$ or $\mathrm{MgSiO}_{3}+\mathrm{Mg}_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}$
P: $\mathrm{px}+\mathrm{ga}$
$\mathrm{F}=3-2=1$, univariant
In the range $\mathbf{b c}_{\mathbf{1 0 - 2 5}}$ and $\mathbf{1 6 - 2 0} \mathbf{~ G P a}$

$$
\mathrm{C}: \mathrm{MgSiO}_{3}+\mathrm{Al}_{2} \mathrm{O}_{3} \text { or } \mathrm{MgSiO}_{3}+\mathrm{Mg}_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}
$$

P: ga
$\mathrm{F}=3-1=2$, divariant

At bc $\mathbf{c}_{\mathbf{0}}$ and $\mathbf{1 6 . 5} \mathbf{~ G P a}$
C: $\mathrm{MgO}+\mathrm{SiO}_{2}$
P: px+wd+st
$\mathrm{F}=3-3=0$, invariant
At bc $\mathbf{c}_{\mathbf{0}}$ and $\mathbf{1 9 . 0} \mathbf{~ G P a}$
C: $\mathrm{MgO}+\mathrm{SiO}_{2}$
P: $\mathrm{ak}+\mathrm{wd}+\mathrm{st}$
$\mathrm{F}=3-3=0$, invariant
h. What is the direct (and easy) indication of the presence of a majorite component in a complex garnet formula ?
$\mathrm{Si}>3.00$ in a formula normalized to a sum of 12 oxygen atoms or 8 cations
i. Calculate the proportions of the garnet end member components andradite, grossular, spessartine, almandine, pyrope and majorite $\left(\mathrm{Mg}_{4} \mathrm{Si}_{4} \mathrm{O}_{12}\right)$ in the garnet compositions below. Not all of the composition contain all of the components. For the allocation of cations to the components, follow the order: andr, gros, spes, alm, pyr, maj (as the sequence above).
If there is too little Ca for andradite, try to allocate the rest of the Fe^{3+} to the skiagite component: $\mathrm{Fe}^{2+}{ }_{3} \mathrm{Fe}^{3+}{ }_{2} \mathrm{Si}_{3} \mathrm{O}_{12}$.
Andradite from Fe^{3+} (if too litte Ca : calculate skiagite from remaining Fe^{3+}), grossular from the rest of Ca , spessartin from Mn , almandine from (remaining) Fe^{2+}, pyrope from remaining Al and majorite from remaining Mg and Si .
Comment: Alternatively, one could calculate skiagite first from all the Fe^{3+} in the mineral formulas. For the three garnet compositions used here, that would be possible and it would result in no andradite and almandine, more grossular and the same amounts of the pyrope and majorite component as with the component sequence specified above. Naturally, the sum of the ferric iron components must also be the same with the two different allocation sequences: i.e. the sum of andridide + skiagite must be constant (the same) for the two alternative component allocation sequences.

1. $\mathrm{Ca}_{0.6} \mathrm{Fe}^{2+}{ }_{0.3} \mathrm{Mn}_{0.1} \mathrm{Mg}_{2.1} \mathrm{Al}_{1.6} \mathrm{Fe}^{3+}{ }_{0.2} \mathrm{Si}_{3.1} \mathrm{O}_{12}$

Andr: $\mathrm{Ca}_{0.3} \mathrm{Fe}^{3+}{ }_{0.2} \mathrm{Si}_{0.3}$
Gros: $\mathrm{Ca}_{0.3} \mathrm{Al}_{0.2} \mathrm{Si}_{0.3}$
Spes: $\mathrm{Mn}_{0.1} \mathrm{Al}_{0.067} \mathrm{Si}_{0.1}$
Alm: $\mathrm{Fe}^{2+}{ }_{0.3} \mathrm{Al}_{0.2} \mathrm{Si}_{0.3}$
Pyr: $\mathrm{Mg}_{1.69} \mathrm{Al}_{1.13} \mathrm{Si}_{1.69}$
Maj (rest of Mg and Si): $\mathrm{Mg}_{0.41} \mathrm{Si}_{0.41} 4.1+4.1=8.2,10.3 \%$
2. $\mathrm{Ca}_{0.15} \mathrm{Fe}^{2+}{ }_{0.15} \mathrm{Mn}_{0.15} \mathrm{Mg}_{2.85} \mathrm{Al}_{1.3} \mathrm{Fe}^{3+}{ }_{0.1} \mathrm{Si}_{3.3} \mathrm{O}_{12}$

Andr: $\mathrm{Ca}_{0.15} \mathrm{Fe}^{3+}{ }_{0.1} \mathrm{Si}_{0.15} \quad 1.5+1+1.5=4, \quad 5 \%$
Gros: No more Ca
Spes: $\mathrm{Mn}_{0.15} \mathrm{Al}_{0.1} \mathrm{Si}_{0.15} \quad 1.5+1+1.5=4, \quad 5 \%$
Alm: $\mathrm{Fe}^{2+}{ }_{0.15} \mathrm{Al}_{0.1} \mathrm{Si}_{0.15} \quad 1.5+1+1.5=4, \quad 5 \%$
Pyr: $\mathrm{Mg}_{1.65} \mathrm{Al}_{1.1} \mathrm{Si}_{1.65} \quad 16.5+11+16.5=44,55 \%$
Maj (rest of Mg and Si): $\mathrm{Mg}_{1.2} \mathrm{Si}_{1.2} 12+12=24,30 \%$
3. $\mathrm{Ca}_{0.3} \mathrm{Fe}^{2+}{ }_{0.6} \mathrm{Mg}_{2.4} \mathrm{Al}_{1.0} \mathrm{Fe}^{3+}{ }_{0.4} \mathrm{Si}_{3.3} \mathrm{O}_{12}$

Andr: $\mathrm{Ca}_{0.3} \mathrm{Fe}^{3+}{ }_{0.2} \mathrm{Si}_{0.3}$
Cation proportions ~ 80, norm. to 100%

Gross: No more Ca
Skiag: $\mathrm{Fe}^{3+}{ }_{0.3} \mathrm{Fe}^{3+}{ }_{0.2} \mathrm{Si}_{0.3} \quad 3+2+3=8, \quad 10 \%$
Spess: No Mn
Alm: $\mathrm{Fe}^{2+}{ }_{0.3} \mathrm{Al}_{0.2} \mathrm{Si}_{0.3} \quad 3+2+3=8, \quad 10 \%$
Pyr: $\mathrm{Mg}_{1.2} \mathrm{Al}_{0.8} \mathrm{Si}_{1.2}$
$12+8+12=32,40 \%$
Majorite (rest of Mg and Si): $\mathrm{Mg}_{1.2} \mathrm{Si}_{1.2} 12+12=24, \quad 30 \%$
7. Melt residues, oceanic and orogenic peridotites and Archean cratonic lithosphere.
a. The simple $\mathrm{FeO}-\mathrm{MgO}$ diagram in Fig. 7A shows the relations between melts and residues derived from melting of primitive mantle peridotites for various initial melting pressures and accumulated melt fractions. Fig 7B shows the composition and melt-extraction trends for various suites of oceanic and orogenic peridotites, plotted with MgO along the x -axis. Note that the melt extraction trends for FeO are quite flat for these pperidotites. Based on Fig 7A, give the expected approximate initial melting pressure (or pressure range): $\mathbf{3} \mathbf{~ G P a}$ (or may be a range of 2.5-3.5 GPa)
and the approximate range of melt fractions (up to $45 \% \mathrm{MgO}$): up to about 0.22 (i.e. 22%)

