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2.03.1 Introduction

Until recently, experimental high-pressure mineral physics

studies mainly focused on materials in the upper part of the

mantle because of technical restrictions in pressure and tem-

perature generation and also in precise measurements of crystal

structures and physical properties under the lower mantle

conditions. However, developments in technologies of both

laser-heated diamond anvil cell (LHDAC) and large-volume

Kawai-type multianvil apparatus (KMA), combined with syn-

chrotron radiation, have enabled us to quantitatively study

phase transitions and some key physical properties of mantle

minerals under the P, T conditions encompassing those of the

whole mantle.

Progress in computationalmineral physics based on ab initio

calculations has also been dramatic in the last two decades in

conjunction with the rapid advancement of computer technol-

ogies. Classical molecular dynamics calculations required a
atise on Geophysics, Second Edition http://dx.doi.org/10.1016/B978-0-444-538
priori assumptions about the parameters for interatomic model

potentials, which largely rely on available experimental data.

Quantum mechanical Hamiltonians of many-body electron

systems can be efficiently and quantitatively evaluated on the

basis of the density functional theory (DFT) (Hohenberg and

Kohn, 1964; Kohn and Sham, 1965). Practical calculations of

minerals that have complex crystal structures can be achieved

using various methods and techniques developed following the

DFT. As a result of such advancement in ab initio calculations,

it is now possible to predict stability and some physical proper-

ties of high-pressure forms quantitatively with uncertainties

that are comparable to those in experimentally derived data,

as was dramatically shown in a series of recent articles related

to the postperovskite (PPv) phase transition (Iitaka et al., 2004;

Oganov and Ono, 2004; Tsuchiya et al., 2004a,b).

Another reason for the relatively scarce mineral physics

studies for the lower part of the mantle may originate from

the fact that there has been no indication of the occurrence of
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major phase transitions under these conditions, except for

those corresponding to the uppermost (�660–800 km) and

lowermost (�2700–2900 km; the D00 layer) parts of the lower

mantle. This is in marked contrast to the nature of the mantle

transition region, best described as ‘the key to a number of

geophysical problems’ by Birch (1952). Recent seismological

studies, however, demonstrated that there are regions that

significantly scatter seismic waves, which may be related to

some unknown phase transitions and/or chemical boundaries

at certain depths in the upper to middle regions of the lower

mantle (e.g., Niu and Kawakatsu, 1996). In addition, both

geochemical considerations and mantle dynamics simulations

suggest that the mantle may be divided into chemically distinct

regions by a boundary at a depth of 1500–2000 km in the

lower mantle (e.g., Kellogg et al., 1999; Tackley, 2000;

Trampert et al., 2004). Moreover, seismological studies with

various methods of analysis have shown detailed structures in

the D00 layer, demonstrating marked heterogeneity in both

horizontal and vertical directions (Lay et al., 2004). Thus,

there is growing evidence that the lower mantle is not feature-

less any more, and many mineral physicists have started to

develop experimental and computational techniques for

higher pressure and temperature conditions (with improved

accuracy) in order to elucidate the mineralogy of the lower

mantle.

In spite of the great efforts in both experimental and theo-

retical studies (mostly conducted in the last two decades), our

knowledge of the stability and mineral physics properties of

high-pressure phases relevant to the lower mantle is still very

limited compared with that of the shallower parts of the man-

tle. Although LHDACs are now capable of generating pressures

and temperatures corresponding to those of the central region

of the Earth’s interior (Tateno et al., 2010), there remain a

number of disagreements in phase equilibrium studies using

this method with various techniques in heating, temperature/

pressure measurements, phase identification, and so on. Min-

eral physics parameters that constrain densities of high-

pressure phases in the lower mantle have been defined thanks

to intense synchrotron sources, particularly those available at

third-generation synchrotron facilities, such as ESRF, APS, and

SPring-8, combined with both LHDAC and KMA, but those

related to elastic wave velocities are scarce to date.

In this chapter, we briefly review recent progress and limi-

tations in experimental and computational techniques in

studying phase transitions and some key physical properties

under the lower mantle conditions. Then, we summarize cur-

rent knowledge of these properties obtained experimentally

and/or theoretically using these techniques. We focus on the

phase transitions and phase relations in simple silicates,

oxides, carbonates, and hydrous systems closely related to the

mantle and slab materials, because experimental measure-

ments or theoretical predictions of other properties such as

shear moduli and their pressure/temperature dependency are

still limited, particularly for the conditions of the deeper

regions of the lower mantle. In contrast, equation of state

(EoS) parameters, that is, zero-pressure densities, bulk moduli,

and the pressure/temperature dependencies of some of the

high-pressure phases, are summarized as far as reliable data

are available. We also review the phase transitions and density

changes in lithologies associated with the subduction of slabs
and also those in the surrounding model mantle materials on

the basis of experimental results on multicomponent systems.

Some implications for the mineralogy of the lower mantle are

discussed based on these data and those obtained for the

simpler systems.
2.03.2 Experimental and Theoretical Backgrounds

2.03.2.1 High-Pressure Technology

Two kinds of high-pressure devices, LHDAC and KMA, have been

used to realize static high-pressure and high-temperature condi-

tions of the lower mantle in the laboratory. The upper limit of

high-pressure generation in LHDAC has been dramatically

expanded using a smaller anvil top (culet) with various shapes

for utilizing the potential hardness of a single-crystal diamond. As

a result, pressures of multi-megabars can now be comfortably

generated in many laboratories. Moreover, quasihydrostatic pres-

sures can be generated by introducing gas pressuremedia, such as

Ar or He, which also serve as thermal insulators when heating

samples with laser beams (Chapter 2.12).

The quality of heating of samples in LHDAC has also been

substantially improved using various laser sources, such as

YAG, CO2, and YLF, with higher powers and more sophisti-

cated computer-controlled feedback systems, as compared

with laser heating in the early stages of its development

during the 1970s and 1980s. These can now yield a stable

high temperature in a sample as small as several tens of micro-

meters in diameter and even less thickness.

Pressures produced in KMA studies (Kawai and Endo, 1970)

using conventional tungsten carbide anvils have long been

limited to 25–30 GPa, although the relatively large sample

volume in this apparatus made it possible to precisely deter-

mine the phase transitions, some physical properties, melting

temperatures, element partitioning, etc., of high-pressure

phases. Temperatures up to 3000 K are also produced stably

for hours or even a few days using various forms of heaters, such

as C, LaCrO3, TiC,WC, and some refractorymetals. In addition,

both temperature and pressure gradients within the sample in

KMA are believed to be far smaller than those in LHDAC.

Introduction of harder materials, that is, sintered bodies of

polycrystalline diamonds (SD) with some binders, such as Co

and Si, as the second stage anvils of KMA has dramatically

changed this situation. Using relatively large SD anvil cubes

of over 10 mm in edge length, pressures approaching 100 GPa

are now produced in some laboratories using KMA (e.g., Ito,

2012; Ito et al., 2005; Tange et al., 2008), without sacrificing

the advantage of the relatively large sample volumes in this

apparatus. However, the limitations in hardness of SD, as

compared to those of pure diamond, should restrict their use

as anvils up to around this pressure. On the other hand, nano-

polycrystalline diamond (NPD) converted directly from graph-

ite at high pressure and temperature was found to be far harder

than SD, and even harder than single crystal diamond (Irifune

et al., 2003). The NPD rod samples as large as 1 cm in both

diameter and length are now produced on a routine basis

(Irifune et al., 2013), which may provide novel anvil material

for higher pressure generation in KMA.

Applications of synchrotron radiation to both LHDAC

and KMA started in the mid-1980s, when the second-generation
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synchrotron sources became available worldwide (e.g.,

Shimomura et al., 1984). A combination of white x-ray and an

energy-dispersive system has been used for KMA experiments

at synchrotron facilities, because geometrical constraints

imposed by the tungsten carbide anvils and surrounding guide-

block systems make it difficult to conduct angle-dispersive

diffraction measurements. Use of the energy-dispersive method

combined with a multichannel analyzer has the merit of rapid

acquisition and analysis of x-ray diffraction data, so that real-

time observations of phase transitions are possible under high

pressure and high temperature. Although thismethod is not very

suitable for the precise determinationof crystal structures (due to

relatively low spatial resolutions in the diffraction peak position

and also to significant variations in background x-ray with the

energy range), some attempts have been successfully made to

make crystal structure refinements using combined step scan-

ning and energy-dispersive measurements (Wang et al., 2004).

Moreover, developments of an imaging plate (IP) detector and,

more recently, x-ray CCD camera (e.g., Hamaya et al., 1996)

combined with high-energy monochromatic x-ray allows us to

quickly acquire x-ray diffraction from the sample inKMAwith an

angle-dispersive method, leading to precise diffraction measure-

ments with relatively short acquisition time.

Identification of the phases present and precise determina-

tions of the lattice parameters, and hence unit-cell volumes, of

the high-pressure phases can be made by in situ x-ray diffrac-

tion measurements. The in situ pressure can also be monitored

by the unit-cell volume changes in some reference materials,

such as NaCl, Au, Pt, and MgO, using an appropriate EoS.

Thus, the phase boundaries and the P, V, T relations of a

number of high-pressure phases relevant to lower mantle min-

eralogy have been determined by in situ x-ray measurements

using KMA, although there remain some uncertainties in the

estimated pressures due to the lack of reliable pressure scales,

as reviewed later, particularly at the pressures of the deeper

parts of the lower mantle. The effect of pressure on the electro-

motive force of a thermocouple is another unresolved issue,

which may yield an additional uncertainty in the pressure

estimation based on these EoSs.

Corresponding in situ x-ray observations have also been

made using LHDAC. As the geometrical restrictions on the x-

ray paths are not as severe in this device, x-ray diffraction is

measured with an angle-dispersion method using monochro-

matized x-ray. The x-ray beam is focused to generally �10–

20 mmwith collimating mirrors, and directed to the disk-shape

sample with diameters of �20–200 mm, depending on pres-

sure ranges. YAG or ILF lasers with beam sizes of�10 to several

tens mm are used in most of the synchrotron facilities. By

adopting IP or x-ray CCD cameras for x-ray exposure combined

with data processing systems, rapid data acquisition and reduc-

tions are also possible. Thus, the phase identification and

measurements of unit-cell parameters of high-pressure phases

can be made by the combination of LHDAC and synchrotron

radiation at pressure and temperature conditions correspond-

ing to the entire mantle (e.g., Murakami et al., 2004a) and even

to the inner core (e.g., Tateno et al., 2010).

The major uncertainty in the in situ x-ray observations with

LHDAC arises from the possible large temperature gradients in

the small thin sample. Some studies demonstrated that varia-

tions of temperature are not very large in the radial direction of
the disk-shape sample, suggesting that the temperature uncer-

tainty may be on the order of �10% or less of the nominal

values if the diameter of the laser beam is significantly larger

than that of the x-ray beam (Shen et al., 2001). However, the

temperature gradient in the axial direction of the sample can be

substantially larger than this estimation (Irifune et al., 2005),

depending on the nature and thickness of the thermal insulator

or pressure medium, as diamond has very high thermal con-

ductivity. Efforts have been made to overcome this issue by

either coating the sample with some metal of high thermal

conductivity (Sinmyo et al., 2008) or using ‘nano-beams’ far

less than 100 nm (e.g., Ice et al., 2010) to reduce the effects of

thermal gradients in the sample.
2.03.2.2 Ab Initio Calculation

Ab initio approaches are those that solve the fundamental equa-

tions of quantum mechanics with a bare minimum of approxi-

mations. DFT is, in principle, an exact theory for the ground state

and allows us to reduce the interacting many-electron problem

to a single-electron problem (the nuclei being treated as an

adiabatic background). A key to the application of DFT in han-

dling the interacting electron gas was given by Kohn and Sham

(1965) by splitting the kinetic energy of a system of interacting

electrons into the kinetic energy of noninteracting electrons plus

some remainder, which can be conveniently incorporated into

the exchange-correlation energy.

The local density approximation (LDA) (Kohn and Sham,

1965) replaces the exchange-correlation potential at each point

with that of a homogeneous electron gas with a density equal to

the local density at the point. The LDA works remarkably well

for a wide variety of materials, especially in the calculations of

equations of state, elastic constants, and other properties of

silicates. Cell parameters and bulk moduli obtained from well-

converged calculations often agree with the experimental data

within a few percent and �10%, respectively. Agreement with

the laboratory data is not perfect, however, and some systematic

discrepancies are noted for some materials.

Attempts to improve LDA via introducing nonlocal correc-

tions have yielded some success. The generalized gradient

approximation (GGA) (Perdew et al., 1992, 1996) is a signif-

icantly improved method over LDA for certain transition

metals (Bagno et al., 1989) and hydrogen bonded systems

(Hamann, 1997; Tsuchiya et al., 2002, 2005a). There is some

evidence, however, that GGA improves the energetics of sili-

cates and oxides but the structures can be underbound. The

volume and bulk moduli calculated with GGA tend to be larger

and smaller, respectively, than those measured experimentally

(Demuth et al., 1999;Hamann, 1996; Tsuchiya and Kawamura,

2001). Considering the thermal effect with zero-point motion,

LDA provides the structural and elastic quantities much closer

(typically within a few percent) to experimental values than

those obtained with GGA. In addition, a discrepancy of about

10–15 GPa is usually seen in transition pressures calculated

with LDA and GGA (Hamann, 1996; Tsuchiya et al., 2004a,c),

which provide lower and upper bounds, respectively. Experi-

mental transition pressures are usually found between the

values obtained with LDA and GGA, although GGA tends to

provide the pressure with better fit to the experimental value

than LDA (Hamann, 1996; Tsuchiya et al., 2004a,c). The main
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source of computational error can be attributed to how to treat

the exchange-correlation potential.

The standard DFT has limitations in applying to Fe-bearing

oxides and silicates in the following case. One-electron approx-

imation with the standard DFT approaches fails to describe the

electronic structure of Fe–O bonding correctly due to its

strongly correlated behavior. Both LDA and GGA usually pro-

duce metallic bands for Fe–O bonding in silicates. They also do

not provide the correct crystal field effects that break the d

orbital degeneracy. More sophisticated classes of technique,

such as LDAþU, LDAþDMFT (dynamical mean-field theory),

multireference configurational interaction, etc. are needed to

treat the many-body effect of electrons more accurately and to

investigate geophysically important iron-bearing systems.

Among these schemes, LDAþU (Anisimov et al., 1991)

is the most practical method for minerals under the current

state of computer technology. The main problem of applying

LDAþU to materials under pressure is the determination

of the effective Hubbard U parameter, meaning screened

on-site Coulomb interaction. Tsuchiya et al. (2006), Hsu

et al. (2011), and Metsue and Tsuchiya (2011) computed the

effective U in magnesiowüstite (Mw) (Mg1�xFex)O, perovskite

(Mg0.875Fe0.125
3þ )(Si0.875Fe0.125

3þ )O3, and PPv (Mg0.9375Fe0.0625)

SiO3 in a nonempirical and internally consistent way based on

a linear response approach for the occupancy matrix

(Cococcioni and de Gironcoli, 2005), respectively.

Combining these techniques, the ab initio lattice dynamics

method (Baroni et al., 1987, 2001) and quasiharmonic

approximation (Wallace, 1972), the calculation condition

was successfully extended to finite temperature including pho-

non thermodynamics (Karki et al., 2000a,b; Tsuchiya, 2003;

Tsuchiya et al., 2004a,c). EoS and other high-temperature

properties can now be computed in the whole mantle P, T

condition quite accurately, even nonempirically. The density

functional perturbation theory (Baroni et al., 1987, 2001)

plays a key role there, allowing direct access to the harmonic

dynamical matrix. More recently, the technique was further

extended to high-temperature properties of iron-bearing sys-

tems combined with the internally consistent LDAþU (Fukui

et al., 2012; Metsue and Tsuchiya, 2011, 2012; Tsuchiya and

Wang, 2013).

Another important new research direction is a technical

enhancement in evaluating transport properties. For example,

an extension of the harmonic lattice dynamics framework

to the anharmonic lattice dynamics enabled access to lattice

thermal conductivity of minerals, which is important in

understanding the deep mantle thermal property. Dekura

et al. (2013) calculated lattice thermal conductivity of

MgSiO3 perovskite under the lower mantle P, T conditions

for the first time within the third-order level of anhamonicity,

and estimated a moderate core–mantle boundary (CMB) heat

flow of �3–6 TW and a Rayleigh number of the lower mantle

large enough to drive a vigorous convection. Metsue and

Tsuchiya (2013), on the other hand, investigated the shear

response of possible slip systems activated in Fe-bearing

MgSiO3 PPv based on generalized stacking fault (GSF) energy

calculations. Although some computational conditions such as

system size or chemical composition are limited in these stud-

ies compared to actual systems, this situation will be greatly

improved in the near future.
2.03.2.3 Pressure Scale

The construction of an accurate pressure standard is a critical

issue in the quantitative measurements of mineral physics

properties under high pressure. The pressure (P)–volume

(V)–temperature (T ) EoS (PVT-EoS) of materials is most useful

in evaluating the experimental pressures under the P, T condi-

tions of the Earth’s deepmantle. The EoS of a pressure standard

is usually derived on the basis of a conversion of dynamical

shock Hugoniot data to isothermal compression data. In prin-

ciple, some parameters specifying the thermal properties of a

solid are necessary for this conversion process of the Hugoniot.

However, measurements of these parameters without any pres-

sure or temperature standards are virtually impossible. In all

EoSs presently used as primary pressure standards, the conver-

sion of the Hugoniot was, therefore, performed with some

simple assumptions about the unknown high-pressure behav-

ior of the conversion parameters. The most critical issue on the

validity of such assumptions is the volume dependence of the

thermodynamic Grüneisen parameter, which is a fundamental

quantity characterizing the thermal effect on the material.

The characteristic properties of gold (Au), namely its low

rigidity, simple crystal structure, chemical inertness, and struc-

tural stability, make it particularly suitable as a pressure stan-

dard under high P, T conditions, and it has, therefore, been

used as a primary standard in many in situ x-ray diffraction

studies (e.g., Funamori et al., 1996; Mao et al., 1991). How-

ever, some recent in situ experiments noted that the pressure

values estimated by different thermal EoSs of gold show sig-

nificant discrepancies. Using the EoS of gold proposed by

Anderson et al. (1989), which is frequently used as the pressure

scale in experiments using multianvil apparatus, Irifune et al.

(1998a) first reported that the postspinel phase boundary of

Mg2SiO4 shifted to about 2.5 GPa lower than the pressure

corresponding to the depth of the 660-km seismic discontinu-

ity (�23.5 GPa and �2000 K). Similar results were obtained

for other various minerals as summarized in Irifune (2002).

Tsuchiya (2003) predicted the thermal properties and the

PVT-EoS of gold based on the ab initio theory including ther-

mal effect of electrons. The state-of-the-art ab initio calculation

showed that the relationship g/g0¼(V/V0)
q, assumed in some

studies, is adequate for gold, at least up to V/V0¼0.7 and the

predicted values of q was 2.15, which is intermediate between

the values used in Heinz and Jeanloz (1984) and Anderson

et al. (1989). According to this study, the ab initio EoS model

reduced the discrepancies between the observed phase bound-

aries of spinel, ilmenite, and garnet and the seismic disconti-

nuity. However, a gap of about 0.7 GPa still remains between

the postspinel transition pressure and that of the 660-km

discontinuity. The similar conclusions with a slightly larger

(1.0–1.4 GPa) discrepancy has also been obtained by an exper-

imental study using an empirical PVT-EoS model of MgO to

determine pressure (Matsui and Nishiyama, 2002).

Even for gold, there are several PVT models, derived by

different groups, which are still not mutually consistent. Such

a problem is also found in EoSs of platinum (Holmes et al.,

1989; Jamieson et al., 1982). Moreover, platinum appears to be

unsuitable for the pressure scale in some cases because of its

reactivity with the sample or materials of the experimental cell

at high P, T conditions (Ono et al., 2005a). A similar problem
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is also encountered with the pressures obtained using MgO.

The pressures obtained using EoSs of different materials,

therefore, show a significant scatter. Akahama et al. (2002)

determined the pressures based on room-temperature EoSs of

several materials compressed simultaneously in a diamond

anvil cell and reported that the EoS of platinum proposed by

Holmes et al. (1989) provided pressures more than 10 GPa

higher than those calculated using EoS of gold as proposed by

Anderson et al. (1989) at pressures of a megabar even at

300 K. A similar inconsistency has also been reported in pres-

sure determination based on gold and silver EoSs (Akahama

et al., 2004).

Examples of the difference in pressures based on a different

EoS of gold than that of platinum are shown in Figure 1, along

a temperature (2300 K) close to the typical lower mantle

geotherm. The pressures evaluated based on various EoSs of

gold differ by �2–3 GPa at the pressures of the uppermost

parts of the lower mantle (25–30 GPa), and are within 5 GPa

at pressures up to �60 GPa. However, the differences become

substantially larger at higher pressures, reaching �15 GPa at

the base of the lower mantle (136 GPa). It is also seen that the

pressures based on an EoS of Pt (Holmes et al., 1989) are even

higher than the highest pressure estimation by Tsuchiya (2003)

by 5 GPa at 136 GPa.

An attempt to determine a more accurate and reliable

EoS of MgO was made by using unified analyses for avail-

able pressure-scale-free experimental data sets, including

shock-compression Hugoniot, zero-pressure thermal expan-

sion, high-temperature adiabatic bulk moduli, and room-

temperature and high-pressure adiabatic bulk moduli data

(Tange et al., 2009a). The resultant EoS successfully repro-

duced all the data used for the analyses throughout the entire

lower mantle P, T conditions, which yields slightly higher

pressures than those derived by other EoSs of MgO commonly

used for in situ x-ray measurements (Matsui et al., 2000;

Speziale et al., 2001). The new EoS of MgO yileds the spinel–

postspinel transition pressure of about 22.5 GPa at 2000 K

(Tange et al., 2009a) using the experimental data of Fei et al.

(2004), which is about 1 GPa lower than the pressure for the
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Figure 1 Differences between the pressures calculated using various
equation of states (EoSs) of gold (Heinz and Jeanloz, 1984; Jamieson
et al., 1982; Shim et al., 2002a; Tsuchiya, 2003) and those based on
Anderson et al. (1989, horizontal line) as a function of pressure at
2300 K. The difference between the pressures using the Anderson scale
and those using EoS of platinum by Holmes et al. (1989) is also
shown for comparison.
660 km discontinuity. A pressure-scale-free EoS of MgO has

also been proposed on the basis of the analyses of ultrasonic

sound velocity data combined with unit-cell volume compres-

sion data (Kono et al., 2010), which yields pressures consistent

with those derived by the above pressure scale at least at

pressures to the upper parts of the lower mantle.
2.03.3 Mineral Phase Transitions in the Lower Mantle

2.03.3.1 Major Minerals in the Mantle and Subducted Slab

Phase transitions in Earth-forming materials dominate the

structure and dynamics of the Earth. Major changes in seismic

velocities traveling through the Earth’s mantle can be generally

attributed to the phase transitions of the constituent minerals,

although some of them may be closely related to some chem-

ical changes. Exploration and investigation of high-pressure

phase transitions in mantle minerals have, therefore, been

one of the major issues in studying the Earth’s deep interior.

Here, we summarize the phase transitions in major min-

erals under lower mantle conditions. Phase transitions in some

relatively minor minerals relevant to the subducted slab lithol-

ogies are also reviewed in the following section. As the exper-

imental data on the phase transitions are still limited and

controversial at P, T conditions of the lower mantle, we have

tried to construct the most likely phase diagrams for the min-

erals with simple chemical compositions based on available

laboratory data and ab initio calculations. Thermoelastic prop-

erties of some key high-pressure phases are also reviewed and

summarized here, as far as experimental data or theoretical

predictions are available.

2.03.3.1.1 MgSiO3

The high-pressure orthorhombic perovskite polymorph of

MgSiO3 (Mg-Pv) is believed to be the most abundant mineral

in the Earth’s lower mantle. The possibility of a further phase

transition of this phase under the lower mantle P, T conditions

has been controversial: Some studies suggest that Mg-Pv disso-

ciates into an assemblage of SiO2 and MgO at 70–80 GPa and

3000 K (Meade et al., 1995; Saxena et al., 1996) or that it

undergoes a subtle phase change above 83 GPa and 1700 K

(Shim et al., 2001b), while others claimed Mg-Pv is stable

almost throughout the lower mantle (e.g., Fiquet et al.,

2000). However, more recent studies suggest that the result

of Shim et al. (2001b) was due to misidentification of the

diffraction peaks of a newly formed platinum carbide (Ono

et al., 2005a). The dissociation of Mg-Pv into the oxides is

also unlikely to occur in the Earth’s mantle according to the

subsequent experimental (Murakami et al., 2004a, 2005;

Oganov and Ono, 2004) studies. Theoretical investigations

also suggest the dissociation should occur at extremely high

pressure above 1 TPa (Tsuchiya and Tsuchiya, 2011b;

Umemoto et al., 2006).

Recently, the Pv to PPv transition in MgSiO3 was found to

occur by in situ x-ray diffraction experiment using LHDAC and

ab initio calculations at �2500 K and �125 GPa (Murakami

et al., 2004a; Oganov and Ono, 2004; Tsuchiya et al., 2004a;

Figure 2), close to the P, T conditions of the D00 layer near the
CMB. The Mg-PPv phase has a crystal structure identical to that

of CaIrO3 with a space group Cmcm. This structure consists of
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silica layers stacking along the b direction and intercalated Mg

ions. In the silica layers, SiO6 octahedra connect sharing edges

along the a direction and sharing corners along the c direction.

Thus, this structure is more favorable at high pressure than the

Pv structure, although the cation coordinations are basically

the same in both structures.

The PPv structure is expected to be highly anisotropic. It is

more compressible along the b direction perpendicular to the

silica layers because only ionic Mg–O bonding exists in the

interlayer spacing. The Pv and PPv structures, therefore, look

very different in this respect. However, the structural relation-

ship between Pv and PPv is quite simple and by applying shear

strain e6, Pv can change to PPv directly (Tsuchiya et al., 2004a).

According to this relation, the c direction remains unchanged

via the structural transition. This suggests that nonhydrostati-

city could significantly affect the transition kinetics of the Pv to

PPv transition.

PPv’s thermodynamic properties and the position and

slope of the phase boundary were investigated by means of

ab initio quasiharmonic free energy calculations (Tsuchiya

et al., 2004a, 2005b). The predicted Clapeyron slope of the

Pv–PPv transition was �7.5 MPa K�1, which is remarkably

close to that required for a solid–solid transition to account

for the D00 discontinuity (Sidorin et al., 1999). Thus, the results

of both experimental and theoretical studies suggest that the

PPv should be the most abundant high-pressure phase in the

D00 region.
Over the past decades, there have been a number of exper-

iments to determine the elastic property of Mg-Pv (e.g., Fiquet

et al., 2000; Funamori et al., 1996; Mao et al., 1991; Ross and

Hazen, 1990; Yagi et al., 1982; Yeganeh-Haeri et al., 1989).

Among these experiments, early studies yielded relatively large

variations for zero-pressure bulk modulus K0 of Mg-Pv ranging

from 254 (Ross and Hazen, 1990) to 273 GPa (Mao et al.,

1991). However, more recent experiments of static compres-

sion and Brillouin spectroscopy yielded mutually consistent K0

values of �253–264 GPa. Density functional calculations have

reported similar but slightly smaller room-temperature bulk

modulus for Mg-Pv of about 250 GPa (Tsuchiya et al., 2004b,

2005b; Wentzcovitch et al., 2004). This underbinding
tendency for Mg-Pv is seen in standard DFT calculations but

is much more prominent in GGA than in LDA (Wentzcovitch

et al., 2004).

In contrast to the extensive investigations of the EoS of

Mg-Pv, the EoS of Mg-PPv has not been well constrained

experimentally. According to a density functional prediction,

the zero-pressure volume of Mg-PPv is very close to that of

Mg-Pv (Tsuchiya et al., 2004a, 2005b). However, K0 and its

pressure derivative of Mg-PPv are significantly smaller and

larger than those of Mg-Pv, respectively, which implies the

volume of Mg-PPv should be smaller than that of Mg-Pv at

the relevant pressure range. The volume decrease associated

with the Pv–PPv transition is estimated to be �1.5% on the

basis of ab initio calculations (Tsuchiya et al., 2004a), which is

consistent with those estimated based on LHDAC experiments.

2.03.3.1.2 MgSiO3–FeSiO3

Mg-Pv is supposed to incorporate 5–10 mol% of FeSiO3 in

peridotitic compositions in the lower mantle (Irifune, 1994;

Katsura and Ito, 1996; Wood and Rubie, 1996). However,

experimental studies for the system MgSiO3–FeSiO3 have

been limited to the pressures of the uppermost part of the

lower mantle, except for a LHDAC study (Mao et al., 1991).

Recent developments in KMA with sintered diamond anvils

substantially extend the pressure and temperature ranges for

phase equilibrium studies as reviewed earlier, and Tange et al.

(2009b) extensively studied the phase relations and the Mg–Fe

partitioning between coexisting Mg-Pv and Mw at pressures up

to �50 GPa and temperatures to 2300 K.

Immediately after the discovery of the Pv–PPv transition in

MgSiO3, the effects of iron on this transition were studied

using LHDAC (Mao et al., 2004, 2005). It was noted that the

presence of iron significantly reduce the stability pressure of

PPv, and PPv with up to �80 mol% of the FeSiO3 component

synthesized at a pressure of �140 GPa and at temperatures

of �2000 K (Mao et al., 2005). However, subsequent studies

(Andrault et al., 2010; Hirose et al., 2008; Sinmyo et al., 2008;

Stixrude and Lithgow-Bertelloni, 2011; Tateno et al., 2007)

suggest that the presence of ferrous iron increases the stability

pressure of PPv, contrary to this study. Thus, the phase rela-

tions in the system MgSiO3–FeSiO3 at pressure up to

�130 GPa and at a typical lower mantle temperature can be

drawn as illustrated in Figure 3, according to the results of

these more recent studies, although the phase boundaries at

pressures higher than 50 GPa have not been well constrained.

A large PvþPPv coexisting pressure range of �20 GPa was

observed for the (Mg0.9Fe0.1)SiO3 composition (Catalli et al.,

2009), but the multicomponent phase boundary determined

by the LHDAC technique in the Mbar condition suffers sub-

stantial uncertainty. On the other hand, a significant effect of

ferrous iron on the stability of Mg-PPv has also been predicted

by some theoretical works using GGA (Caracas and Cohen,

2005b; Stackhouse et al., 2006). However, this technique is

known to be less applicable to the iron-bearing system as

mentioned earlier. In contrast, a recent internally consistent

LDAþUþab initio LDþQHA study showed much smaller

effects even at mantle temperatures (Metsue and Tsuchiya,

2012), being consistent with a different LHDAC experiment

(Sinmyo et al., 2008). These calculations, particularly Tsuchiya

and Wang (2013), also reported that a Pv dominant
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composition cannot reproduce seismological observations of

the lower mantle. This is qualitatively consistent with an EoS

measurement of Pv (Tange et al., 2012), but less supportive of a

Brillouin scattering experiment (Murakami et al., 2012).

The effect of iron on the PPv transition has also been

studied in the light of the high-pressure phase changes of

hematite, corundum-type Fe2O3. Hematite transforms first to

the high-pressure phase with the Pbnm Pv structure or

Rh2O3(II) structures at 30 GPa, whose x-ray diffraction pat-

terns are very similar to each other (Ono et al., 2005b). Further

transitions in Fe2O3 to the structure assigned as the CaIrO3-

type structure has been reported to occur at a transition pres-

sure of�50 GPa (Ono et al., 2005b). This transition pressure is

significantly lower than the Pv–PPv transition pressure in

MgSiO3. Thus, the presence of iron in the trivalent state is

also suggested to lower the pressure of the Pv–PPv transition,

unlike divalent ferrous iron. Nevertheless, this issue has not

been fully resolved and there remains a lot of room for further

theoretical and experimental investigation.

2.03.3.1.3 MgSiO3–Al2O3

Irifune (1994) demonstrated that Mg-Pv is the major host

of aluminum in a pyrolite composition at pressures and

temperatures of the uppermost parts of the lower mantle,

possessing �4 mol% of Al2O3. Phase relations in the system

MgSiO3–Al2O3 under the lower mantle conditions have since

been studied (Irifune et al., 1996a; Ito et al., 1998) with an

emphasis on the MgSiO3–Mg3Al2Si3O12 system. Irifune et al.
(1996a) showed that majorite garnet with less than�15 mol%

Al2O3 transforms to the Pv structure via a mixture of these two

phases, while this assemblage further changes to an assemblage

of majorite plus corundum at pressures about �28 GPa, at

1800 K. This assemblage with the Mg3Al2Si3O12 composition

was later shown to form almost pure Pv at�38 GPa using KMA

with SD anvils (Ito et al., 1998).

Phase transitions in Al2O3 corundum under the lower man-

tle condition were first studied by Funamori and Jeanloz

(1997) using LHDAC based on earlier ab initio predictions

(Marton and Cohen, 1994; Thomson et al., 1996), which

demonstrated that corundum transforms to a new phase with

the Rh2O3 (II) structure at �100 GPa and at �1000 K. More

recently, it has been predicted by ab initio studies that Al2O3

has a similar high-pressure phase relation to Fe2O3 (Caracas

and Cohen, 2005a; Stackhouse et al., 2005b; Tsuchiya et al.,

2005c). The Pv to PPv transition was thus suggested to occur in

Al2O3 at about 110 GPa at 0 K, although the Pv phase is

eclipsed by the stability field of the Rh2O3(II) phase. This Pv

to PPv transition pressure in Al2O3 is about 10 GPa higher but

fairly close to that in MgSiO3, though Akber-Knutson et al.

(2005) predicted a much larger effect of Al by estimating the

solid solution energy. In contrast to these static-temperature

calculations, a more careful modeling for finite temperature,

solid-solution phase equilibria based on the statistical

mechanical multi-configuration sampling approach (Tsuchiya

and Tsuchiya, 2008) indicated a much smaller effect of alumi-

num. A narrow PvþPPv coexisting pressure width expected for

the reasonable Al content in the lower mantle could be respon-

sible for the observations of the sharp D00 discontinuity (Lay

et al., 1998).

In situ x-ray diffraction experiments on pyrope composi-

tions by LHDAC (Tateno et al., 2005) demonstrated a consis-

tent result regarding the effect of aluminum incorporation on

the PPv transition pressure. Andrault et al. (2010) also reported

a large PvþPPv coexisting region from �120 to �150 GPa

in the peridotitic Al and Fe composition and from �100

to �180 GPa in a more felsic composition by LHDAC. The

broad coexisting region was similarly observed by LHDAC

(Catalli et al., 2009; Nishio-Hamane et al., 2007), although

the pressure intervals of the coexisting regions are inconsistent

in these studies. For instance, Nishio-Hamane et al. (2007)

reported that the coexisting region starts from �150 GPa and

ends at �170 GPa in the similar composition, which is sub-

stantially higher than those of other studies and even higher

than the CMB pressure (136 GPa). These conflicting results

show that the accurate determination of the multicomponent

phase boundary is difficult for the Mbar region using current

LHDAC techniques. Thus, we rely on the theoretical results and

expect that the effect of aluminum on the PPv transition pres-

sure in MgSiO3 is not very significant. The plausible phase

diagram of the system MgSiO3–Al2O3 in the lower-mantle P,

T condition is illustrated in Figure 4.

The presence of Al2O3 in Fe-bearing Pv is known to lead to a

coupled substitution of Fe3þ and Al3þ for Mg2þ and Si4þ in Pv

(Frost and Langenhorst, 2002; McCammon, 1997; Wood and

Rubie, 1996), yielding substantial enrichment of ferric iron in

Pv in the uppermost regions of the lower mantle (Irifune,

1994; Irifune et al., 2010; Nishiyama and Yagi, 2003; Wood,

2000). In addition to this coupled substitution effect, it has
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been suggested that the high-spin to low-spin transitions in

both Pv and Mw may cause some significant changes in the

partitioning of iron between these major phases in the lower

mantle. Although the nature of the spin transition in Mw has

been fairly well understood based on recent ab initio compu-

tations and experimental studies (see below), those in Pv have

not yet been resolved. This is partly because Pv has two cation

sites (A and B) and can accommodate both ferrous and ferric

irons, depending on the alumina content, which makes the

computational and experimental studies extremely difficult.

The current situations on the studies of spin transitions in Pv

can be seen in a recent comprehensive review article (Lin et al.,

2013), which, however, may suffer some significant revisions

in the near future, considering the rapid progress in this

research field.

2.03.3.1.4 MgO–FeO
Mw, (Mg1–xFex)O, is believed to be the next major mineral

phase in Earth’s lower mantle after ferrosilicate Pv (Mg1�xFex)

SiO3 (e.g., Helffrich and Wood, 2001). The magnesium end-

member of Mw, periclase, possessing the B1 (NaCl) structure,

is known to be an extraordinarily stable phase. No phase

transitions in this material have been observed or predicted

under the P, T conditions of the entire mantle (Alfé et al., 2005;

Duffy et al., 1995), primarily due to substantially smaller ionic

radius of magnesium relative to that of oxygen. FeO wüstite, on

the other hand, transforms to an antiferromagnetic phase

accompanied by a small rhombohedral distortion. This transi-

tion is a typical magnetic order–disorder transition and,

therefore, the transition temperature corresponds to the Neel
point. Although the rhombohedral B1 (rB1) phase is stable at

low temperatures up to about 110 GPa, at higher pressure over

65 GPa and high temperatures, the rB1 phase transforms to the

normal or inverse B8 (NiAs) structure, as shown in Figure 5 (Fei

and Mao, 1994; Kondo et al., 2004; Murakami et al., 2004b).

However, several important properties of this high-pressure

phase, such as high-temperature stability, structural details,

and electronic property, are still in debate (Fei and Mao,

1994; Mazin et al., 1998; Murakami et al., 2004b).

For the compositions between the two end-members of

MgO and FeO, some controversial experimental results have

emerged: Mw with XFe¼50% was reported to dissociate into

two components, Fe-rich and Mg-rich Mws at 86 GPa and

1000 K (Dubrovinsky et al., 2000). In contrast, another study

using LHDAC found no dissociation of Mw with even higher

XFe of 61% and 75% up to 102 GPa and 2550 K, though the

sample with XFe¼75% showed a displacive transition to the

rB1 structure at low temperature similar to FeO wüstite (Lin

et al., 2003). Thus, further experimental and theoretical studies

are required to address the possible dissociation of Mw.

It has been demonstrated that FeO with the B1 structure

suffers metallization under the P, T conditions of the lower

mantle (Figure 5) on the basis of electric conductivity (Ohta

et al., 2010, 2012) and radiometric (Fischer et al., 2011) mea-

surements, as well as first principles calculations (Ohta et al.,

2012). Metallization of FeO suggests that oxygen may be read-

ily incorporated into the Earth’s core as the major alloying light

element with some important geochemical implications

(Ringwood et al., 1990). Moreover, the possible existence of

the iron-rich Mw in the lowermost mantle (e.g., Wicks et al.,

2010) should lead to strong electromagnetic interactions with

the liquid outer core if such Mw is of metallic nature.

Another issue relevant to Mw, as well as the ferrosilicate Pv,

which should affect the thermoelastic properties of these

phases, is the occurrence of electron spin transitions under

the lower mantle conditions. High spin (HS) to low spin (LS)

transitions in iron have been observed by in situ x-ray emission

spectroscopy and Mössbauer spectroscopy from 40 to 70 GPa

in Mw containing about 18% iron (Badro et al., 2003; Lin

et al., 2005) and from 70 to 120 GPa in (Mg,Fe)SiO3 Pv
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(Badro et al., 2004; Jackson et al., 2005; Li et al., 2004) at room

temperature. Several significant effects of the thermochemical

state of the lower mantle can be inferred by the spin transition

of iron. The spin transition in Mw is accompanied by signifi-

cant volume reductions (Lin et al., 2005; Tsuchiya et al., 2006)

and changes in these minerals’ optical absorption spectrum

(Badro et al., 2004). These can produce (1) seismic velocity

anomalies, (2) variations in Mg–Fe2þ partitioning between

Mw and Pv, (3) changes in radiative heat conductivity, and

(4) compositional layering (Badro et al., 2003, 2004; Gaffney

and Anderson, 1973). The elastic signature of this transition in

Mw has been partially explored (Lin et al., 2005), but there is

still much uncertainty. In contrast, anomalous compression

behavior has not yet been observed in (Mg,Fe)SiO3 Pv.

The strongly correlated behavior of iron oxide has deterred

the quantification of these changes by density functional cal-

culations based on the local spin density approximation and

spin polarized generalized gradient approximation (s-GGA).
These approaches incorrectly predict a metallic HS ground state

and then successive spin collapses across the transition as

reported for FeO (Cohen et al., 1997; Sherman and Jansen,

1995). More recently, a new model explaining the mechanism

of HS-to-LS transition of iron in Mw has been proposed based

on calculations using a more sophisticated LDAþU technique

that describes the electronic structure of a strongly correlated

system more correctly (Tsuchiya et al., 2006). In this study, the

effective Hubbard U parameter has been optimized at each

volume and at each iron concentration up to XFe of 18.75%

in an internally consistent way. As a result, it has been demon-

strated that the large stability field of HS/LS mixed state

appears at high temperatures instead of the intermediate spin

state, due to the contributions of coexisting HS/LS mixing

entropy and magnetic entropy. According to this transition

mechanism, Mw is expected to be in this HS/LS mixed state

for almost the entire range of lower mantle P, T conditions with

the proportion of HS iron decreasing continuously with

increasing pressure (Figure 6). No discontinuous change in

any physical properties would appear to be associated with

the spin transition in Mw within this range. Although phonon

effects were neglected to calculate the high-temperature ener-

getics in Tsuchiya et al. (2006), these effects were later exam-

ined by the internally consistent LDAþUþab initio LDþQHA
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calculations (Fukui et al., 2012), which demonstrated that

the effects are indeed unchanged across the spin transition

and thus negligible in calculating the finite-temperature

mixed spin (MS) region at least for the (Mg0.875Fe0.125)O

composition.

It has been reported that the spin transition pressure signif-

icantly increases with increasing XFe. A volume decrease asso-

ciated with the spin transition was observed in (Mg0.4Fe0.6)O at

95 GPa (Lin et al., 2005), while no spin transition has so far

been reported in pure FeO up to 143 GPa (Badro et al., 1999).

Iron–iron interactions, which are no longer negligible at XFe

higher than 20%, might also reinforce the magnetic moment

significantly, although the mechanism of this tendency has not

been fully understood to date.

Some studies propose anomalous behaviors in the MS state

of Mw for elasticity (Crowhurst et al., 2008; Marquardt et al.,

2009a; Wentzcovitch et al., 2009), electrical conductivity (Lin

et al., 2007), and viscosity (Wentzcovitch et al., 2009). These,

however, currently lack corroborative evidence. In contrast,

other experiments observed no, or marginal, anomalies in the

elasticity of Mw (Antonangeli et al., 2011; Murakami and Bass,

2011). Although further investigations are clearly required for

detailed understanding, the latter seems physically reasonable

if the MS state is considered to be a kind of two-phase

coexistence.

It is also pointed out that the spin crossover inMw affects its

elastic anisotropy (Marquardt et al., 2009b). LS Mw was

reported to have at least 50% stronger shear anisotropy in the

lowermost mantle compared to MgO, which is originally quite

anisotropic at high pressures (Karki et al., 1999; Tsuchiya and

Kawamura, 2001). According to this result, Mw was inferred to

be a dominant cause of seismic anisotropy in the D00 layer
(Marquardt et al., 2009b), but careful modeling of the rheo-

logical property, including both PPv and Mw, is obviously

required to analyze the source of observed anisotropy in

more detail (Merkel et al., 2007; Metsue and Tsuchiya, 2013;

Miyagi et al., 2010).

2.03.3.1.5 CaSiO3

The lower mantle is believed to consist mainly of (Mg,Fe)SiO3

Pv and Mw, with some CaSiO3 perovskite (Ca-Pv) up to

7–8 vol% (e.g., Irifune, 1994). Despite its importance, there

are many unanswered questions about the structure, stability,

EoS, and other physical properties of Ca-Pv under pressure and

temperature, which complicate some attempts to model the

mineralogy of the lower mantle (e.g., Stacey and Isaak, 2001).

CaSiO3 crystallizes to the Pv structure over 10–13 GPa,

depending on temperature, and is known to be unquenchable

at ambient conditions. At lower mantle conditions, CaSiO3

has an ideal cubic Pv structure, while, at lower temperatures,

it is suggested to be slightly distorted. The small degree of

the possible distortion is hardly observed by current high-

temperature and high-pressure x-ray techniques, and several

orthorhombic and tetragonal structures have been proposed,

based on in situ x-ray diffraction measurements (Kurashina

et al., 2004; Ono et al., 2004; Shim et al., 2002b) or theoretical

calculations (Caracas et al., 2005; Chizmeshya et al., 1996;

Magyari-Köpe et al., 2002; Stixrude et al., 1996).

EoS of Ca-Pv has been determined up to CMB pressures by

different groups (e.g., Kurashina et al., 2004; Mao et al., 1989;
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Ono et al., 2004; Shieh et al., 2004; Shim et al., 2000a,b,

2002b; Tamai and Yagi, 1989; Wang et al., 1996). The fitting

of the experimental results by third-order Birch–Murnagham

EoS, yielded a unit-cell volume, V0¼45.54 Å3, bulk modulus,

K0, ranging from 232 to 288 GPa, and its pressure derivative,

K0

0
, within 3.9–4.5. Most of the recent results, with careful

removing of the effect of deviatoric stress on the produced

pressure, however, yielded the lower end values (232–

236 GPa; Wang et al., 1996; Shim et al., 2000b) in this range.

The results of corresponding ab initio studies (e.g.,

Chizmeshya et al., 1996; Karki and Crain, 1998; Stixrude

et al., 1996; Wentzcovitch et al., 1995) are similar to those

obtained for the experimental data. Most of these studies, both

experimental and theoretical, have focused on the behavior of

the cubic modification of CaSiO3 under pressure.

Caracas et al. (2005) performed a detailed investigation of

the major symmetry-allowed modifications of CaSiO3

obtained as distortions from the parent cubic phase by means

of ab initio pseudopotential theory. They examined nine mod-

ifications having different symmetries and reported that the I4/

mcm phase is the most likely stable static atomic configuration

up to about 165 GPa. Enthalpy difference between this I4/

mcm and the cubic Pv phase increased with increasing pres-

sure, indicating that the I4/mcm structure becomes more stable

relative to the cubic structure at higher pressure. The bulk

modulus was estimated to be about 250 GPa for all modifica-

tions with the exception of the R-3c structure. This theoretical

K0 is fairly similar to recent experimental values (Shim et al.,

2002b; Wang et al., 1996), but much smaller than those

reported in earlier nonhydrostatic experiments (Mao et al.,

1989; Tamai and Yagi, 1989).

Some studies focused on the high-temperature phase

change from low symmetry phase to cubic Ca-Pv. Ono et al.

(2004) reported that this transition occurs at about 600–

1200 K at 25–120 GPa, where the transition temperature

increased with increasing pressure, consistent with the theoret-

ical prediction (Caracas et al., 2005). These temperatures are

much lower than the typical lower mantle geotherm of about

2000–2500 K, suggesting that CaSiO3 may have the cubic form

throughout the actual lower mantle (Figure 7). However, most

recent ab initio molecular dynamics studies (Li et al., 2006a,b)

reported very different results. They found the tetragonal phase

stable even at the mantle temperatures in addition to the low-
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temperature stability of the orthorhombic phase. Their calcu-

lated elasticity of Ca-Pv is also very different from earlier results

(Karki and Crain, 1998) particularly with respect to the shear

modulus. The cause of the discrepancies is explained by

Tsuchiya (2011), who advocates that even cubic Ca-Pv should

have a smaller shear modulus comparable to that of tetragonal

Ca-Pv.

2.03.3.1.6 SiO2

Recent theoretical studies suggest that a second-order displa-

cive phase transition from stishovite (St) to the CaCl2-type

structure occurs at 50–60 GPa at room temperature (Kingma

et al., 1995). It has also been predicted that the CaCl2-type

silica undergoes a further structural transition to the a-PbO2

phase (Dubrovinsky et al., 1997; Karki et al., 1997a). The

results of the experimental studies on these issues, however,

have been controversial. LHDAC studies reported that the

CaCl2-type phase persists at least up to 120 GPa (Andrault

et al., 1998), and the transition to the a-PbO2 phase occurs at

121 GPa and 2400 K (Murakami et al., 2003). In contrast,

another similar experiment showed that the a-PbO2-like

phase was formed from cristobalite above 37 GPa at room

temperature, and that St directly transformed to the a-PbO2-

type structure above 64 GPa at 2500 K with a negative Cla-

peyron slope (Dubrovinsky et al., 2001). In addition, Sharp

et al. (1999) found the a-PbO2-type phase in a natural mete-

orite sample, which would have experienced very low shock

pressure below 30 GPa. These discrepancies may come from

various difficulties in LHDAC experiments, such as those asso-

ciated with kinetic problems, temperature or pressure uncer-

tainties, effect of different starting materials, etc.

During the last two decades, a series of theoretical studies

(Dubrovinsky et al., 1997; Karki et al., 1997a; Kingma et al.,

1995) also addressed this issue of the post-St phase transitions

in the framework of the ab initio calculations. These early

theoretical studies were limited to static conditions, the calcu-

lations being performed at T¼0 K, without considering

the zero-point energy. To investigate the contradictory experi-

mental results on the high-temperature phase stability of SiO2

under high pressure, finite temperature thermal effect on the

transitions obtained by these static calculations should be

taken into account.

Tsuchiya et al. (2004c) predicted the high-pressure and

high-temperature phase equilibrium of three ordered modifi-

cations of SiO2 using ab initio density functional perturbation

theory and the quasiharmonic approximation. The predicted

St-CaCl2 phase transition boundary is P¼56þ0.0059 T (K)

GPa, which is consistent with the results of a LHDAC experi-

ment by Ono et al. (2002). This predicted slope of the St-CaCl2
boundary of about 5.9 MPa K�1 is close to, but slightly larger

than, the earlier rough estimate of 4 MPa K�1 (Kingma et al.,

1995). The LHDAC experiment resulting in a St-a-PbO2

boundary with a negative Clapeyron slope (Dubrovinsky

et al., 2001) disagrees with the phase diagram based on

Tsuchiya et al. (2004c), as shown in Figure 8. This disagree-

ment may be due to experimental uncertainties and/or to

kinetic problems in the former LHDAC experiment. These are

supported by later calculations by Oganov et al. (2005a),

though they proposed substantially lower transition pressures

primarily due to the application of LDA (see Section 2.03.2.2).
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On the other hand, the phase transition boundary

between CaCl2 and a-PbO2 in SiO2 is predicted to be

P¼106.3þ0.00579 T (K) GPa based on ab initio calculations

(Tsuchiya et al., 2004c), which locates near the lowermost

mantle P, T conditions. This calculation also indicates that

the a-PbO2-type phase is the stable form of silica at depths

down to the CMB, consistent with the result of an LHDAC

experiment (Murakami et al., 2003). These theoretical and

experimental results also suggest that the a-PbO2-type phase

silica recently discovered in the meteorite sample might have

been formed by a metastable reaction.

Irifune and Ringwood (1993) reported that St contains up

to �5% Al2O3 in a mid-ocean ridge basalt (MORB) composi-

tion under the uppermost lower mantle conditions. It was

found that the aluminous St, containing Al2O3 of 4–6 wt%,

transforms to a CaCl2 structure at pressures of 23–25 GPa at

300 K (Bolfan-Casanova et al., 2009; Lakshtanov et al., 2007),

substantially lower than those determined for pure SiO2 St

(�55–60 GPa; Ono et al., 2002; Tsuchiya et al., 2004c). More-

over, the occurrence of shear softening before the phase tran-

sition (Lakshtanov et al., 2007) and significant decreases in

bulk moduli of both St and the CaCl-phase (Bolfan-Casanova

et al., 2009) were observed in aluminous St. The acoustic

softening associated with this transition of aluminous St

in subducted oceanic crust may account for the observed

localized discontinuities in the lower mantle (see the succeed-

ing text).
2.03.3.1.7 Al-rich phase
Majorite garnet is the main host of aluminum in the mantle

transition region in both pyrolite and basaltic compositions. It

transforms to an assemblage of Mg-PvþCa-Pv at pressures

corresponding to the uppermost lower mantle. Aluminum is

incorporated mostly in Mg-Pv in pyrolite composition (Irifune,

1994), whereas a separate aluminous phase is formed in basal-

tic compositions under the P, T conditions of the lower mantle,

as demonstrated by Irifune and Ringwood (1993).

The aluminous phase, named ‘Al-rich phase’ by these

authors, was suggested to have a crystal structure similar, but

not completely identical, to the calcium ferrite structure. This

Al-rich phase was later proposed to have a hexagonal structure
or NAL-phase (new aluminous phase; Akaogi et al., 1999;

Miyajima et al., 2001; Sanehira et al., 2005), whereas others

proposed that this phase possesses the calcium ferrite structure

(Hirose et al., 1999; Kesson et al., 1998; Ono et al., 2005d).

More recently, it was shown that both NAL-phase and the

calcium ferrite phase coexist in MORB at pressures lower than

�45–50 GPa, while the former phase disappears at higher

pressures (Ricolleau et al., 2008, 2010), consistent with the

phase relations in the MgAl2O4–NaAlSiO4 system (see the

succeeding text). In any case, only very minor effects on the

mineralogy and dynamics in the lower mantle are expected

upon the change between these two phases under the lower

mantle conditions (Sanehira et al., 2005; Shinmei et al., 2005),

as the crystal structures of these phases are quite similar and

yield only a slight difference in densities.
2.03.3.2 Other Minor Minerals

2.03.3.2.1 MgAl2O4, NaAlSiO4

MgAl2O4 spinel is known to decompose to simple oxides of

MgO and Al2O3 at pressure and temperatures of the mantle

transition region and recombine to form a calcium ferrite

(CaFe2O4, CF) type phase at about 25 GPa (Akaogi et al.,

1999; Funamori et al., 1998; Irifune et al., 1991). Although

the formation of an unknown phase named e-phase (Liu,

1978) was reported at a similar pressure at 1300 K in LHDAC

experiments, none of the subsequent LHDAC and KMA exper-

iments using both quench and in situ x-ray measurements have

confirmed this phase. Instead, it has been shown that the

CF-phase further transforms to a calcium titanate (CaTiO4,

CT) phase at pressures of �40–45 GPa (Funamori et al.,

1998). An ab initio periodic linear combination of atomic

orbitals calculation by Catti (2001) demonstrated that the

calcium titanate structure is stable relative to the calcium ferrite

structure at pressures greater than �39–57 GPa, but this phase

change was not confirmed by a recent pseudo-potential study

(Tsuchiya, 2011).

NaAlSiO4 also adopts the calcium ferrite structure at pres-

sures above 25 GPa (Akaogi et al., 1999; Liu, 1977), although

the formation of the complete solid solutions between this and

MgAl2O4 was not reported, as there is a region of the hexagonal

phase (NAL-phase) in the intermediate region of these end-

member compositions (Akaogi et al., 1999; Ono et al., 2009;

Shinmei et al., 2005). It was demonstrated that the CF-type

NaAlSiO4 is stable at least at pressures up to 75 GPa and

temperatures to 2500 K on the basis of LHDAC experiments

(Tutti et al., 2000).

More recently, the stability relations of the CF phase and the

hexagonal phase in the joint NaAlSiO4–MgAl2O4 were investi-

gated both experimentally and theoretically (Imada et al.,

2011; Kawai and Tsuchiya, 2012). The study demonstrated

that the hexagonal phase is no more stable at pressures higher

than �45 GPa and completely transforms to the CF phase.

Kawai and Tsuchiya (2012) also showed that the NAL–CF

transition would not cause any notable velocity changes in

the lower mantle.

2.03.3.2.2 KAlSi3O8, NaAlSi3O8

KAlSi3O8-rich feldspar, an important mineral in K-rich basalt

(e.g., Wang and Takahashi, 1999) and continental crust
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and marine sediment lithologies (Irifune et al., 1994), trans-

forms to the hollandite structure via a mixture of K2Si2O5

waditeþAl2O5 kyantiteþSiO2 coesite at about 9 GPa.

KAlSi3O8 hollandite plays an important role in fractionation

of some trace elements because of its peculiar tunnel structure

that accommodates large ion lithophile elements (Irifune et al.,

1994; Rapp et al., 2008). Although a LHDAC study suggested

that this structure is stable almost throughout the lower mantle

P, T conditions (Tutti et al., 2001), recent in situ x-ray diffrac-

tion studies using DAC with a helium pressure medium at

room temperature (Ferroir et al., 2006) and KMA at high

pressure and high temperature demonstrated that the hollan-

dite transforms to an unquenchable phase, named ‘hollandite

II’ (Sueda et al., 2004), at about 22 GPa at room temperature

with a positive Clapeyron slope. Although only a slight mod-

ification in crystal structures between these phases was noted

(Ferroir et al., 2006), this transition may significantly affect

partitioning of some trace elements between the K-hollandite

and coexisting melts in the lower mantle.

Ab initio calculations (Caracas and Boffa Ballaran, 2010;

Kawai and Tsuchiya, 2013; Mookherjee and Steinle-Neumann,

2009) demonstrated that the transition of K-hollandite to

the holandite II structure is associated with an elastic insta-

bility as suggested by Hirao et al. (2008). Kawai and Tsuchiya

(2013) further indicated clearly that the transition has the

second-order nature. These studies also showed that the

hollandite-II phase remains stable up to the CMB condition.

NaAlSi3O8-rich hollandite was found in shock veins of

some meteorites (e.g., Gillet et al., 2000; Tomioka et al.,

2000). However, attempts to reproduce the hollandite with

such compositions by high-pressure experiments have failed

(Liu, 2006; Yagi et al., 1994), as the solubility of this compo-

nent is limited to about 50 mol% at pressures of �22 GPa and

at temperatures up to 2500 K. Thus, this phase could have been

formed metastably in a very short period of time under shock

compression in the parental bodies of these meteorites.

A recent ab initio computation supports this idea, showing

that NaAlSi3O8-rich hollandite is unstable relative to other

possible phase assemblages at pressures at least to 40 GPa

(Deng et al., 2010).

2.03.3.2.3 CAS phase
The ‘CAS (Ca- and Al-rich silicate) phase’ was first described by

Irifune et al. (1994) as a new Ca- and Al-rich high-pressure

phase in a continental crust composition at pressures above

�15 GPa and was suggested to be a major host for aluminum

and calcium in the subducted marine sediments in the mantle

transition region. Subsequent experimental studies demon-

strated that this phase has the ideal composition of CaAl4-
Si2O11, possessing a hexagonal barium ferrite-type structure

with space group P63/mmc (Gautron et al., 1999). Moreover,

this high-pressure phase with a composition of (CaxNa1�x)

Al3þxSi3�xO11 was recently discovered in a Shergottite shocked

Martian meteorite in association with St and/or K,Na-rich

hollandite (Beck et al., 2004), both of which are known to be

stable only at pressures above �9 GPa.

The CAS phase is suggested to have silicon in fivefold

coordination in a trigonal bipyramid site at high pressure and

high temperature and is supposed to decompose into fourfold

and sixfold coordinations upon quenching and subsequent
release of pressure (Gautron et al., 1999). In situ Raman spec-

troscopy and x-ray diffraction measurements actually indicated

the formation of fivefold coordinated silicon under pressure,

which should play an important role in the transport proper-

ties of minerals through the formation of oxygen vacancies

(Gautron et al., 2005).

Stability of the CAS phase was determined based on high-

pressure experiments at pressures to 23 GPa and temperatures

to 2073 K, combined with thermodynamic analyses, showing

that this phase is stable above �12 GPa and at temperatures

exceeding 1373 K (Akaogi et al., 2009). The low-pressure phase

assemblage is reported as garnetþkyaniteþcorundum, while

an assemblage of garnetþStþcorundum is stable at the lower

temperatures. It has also been reported that grossular garnet

decomposes to Ca-Pvþ the CAS phase at pressures above

20 GPa and temperatures higher than �1400 K (Greaux

et al., 2011).

2.03.3.2.4 Phase D, d-AlOOH
Phase D was first noted by Liu (1986) as a new dense hydrous

magnesium silicate (DHMS) phase in serpentine and was later

confirmed by in situ x-ray diffraction (Irifune et al., 1996b).

Both the x-ray power diffraction profile and the chemical com-

position of this phase were also refined on the quenched

sample (Irifune et al., 1996b; Kuroda and Irifune, 1998). Two

groups subsequently succeeded in refining its crystal structure

independently (Kudoh et al., 1997; Yang et al., 1997). The

stability of phase D has since been studied experimentally

using both KMA (Frost and Fei, 1998; Irifune et al., 1998b;

Ohtani et al., 1997) and LHDAC (Shieh et al., 1998). This

demonstrated that this phase has a wide stability field up to

4050 GPa at temperatures to �1800 K, whereas it dehydrates

to form an assembly containing Mg-Pv and Mw at higher

temperatures (Shieh et al., 1998).

Serpentine is the major hydrous mineral in the subducted

slab, and phase D should be the only possible DHMS present

in the upper part of the lower mantle transported via the

subduction of slabs (Irifune et al., 1998b; Ohtani et al., 2004;

Shieh et al., 1998), although the newly found d-AlOOH

(Suzuki et al., 2000) could be an alternative water reservoir in

the lower mantle if a certain amount of water is retained in the

crustal components in the subducted slabs. d-AlOOHwas both

experimentally and theoretically (Sano et al., 2008; Tsuchiya

and Tsuchiya, 2011a) reported to be stable under almost the

entire P, T conditions of the lower mantle. The extraordinarily

high stability of d-AlOOH as a hydrous phase suggests that this

phase could be a potentially important water carrier into the

core. d-AlOOH is predicted to eventually transform to a pyrite-

type structure at �150 GPa before its dehydration (Tsuchiya

and Tsuchiya, 2011a). d-AlOOH is also important in the con-

text of the hydration of St because of the similarity in their

crystal structures (Panero and Stixrude, 2004). Incorporation

of the AlOOH component into St might significantly affect the

post-St transition pressure (Lakshtanov et al., 2007).

For both phase D and d-AlOOH, structural changes associ-

ated with hydrogen bond symmetrization are expected to occur

on the basis of ab initio calculations (Tsuchiya et al., 2002,

2005a), which should affect the compressional behavior and,

hence, density changes of these hydrous phases in the lower

mantle. Tsuchiya (2013) recently predicted that phase
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D transforms to an assemblage of St plus a new hydrous phase

MgSiO4H2 with monoclinic symmetry in a limited pressure

range between 40 and 52 GPa, based on ab initio calculations.

This phase may form solid solutions with AlOOH, and should

be further explored to identify the plausible hydrous phases in

the lower mantle.

2.03.3.2.5 MgCO3, CaCO3

Carbonates are important constituents of pelagic sediments,

parts of which are supposed to subduct into the mantle. It has

been shown that MgCO3 magnesite is the major carbonate in

the mantle (e.g., Biellmann et al., 1993), and its stability under

high pressure has been studied using LHDAC. Magnesite was

reported to be stable at pressures up to 80 GPa almost through-

out the lower mantle (Fiquet et al., 2002; Gillet, 1993), but

a recent in situ x-ray diffraction study demonstrated it trans-

forms to an unknown phase (magnesite II) at pressures

above �115 GPa, at 2000–3000 K (Isshiki et al., 2004).

Although the dissociation of magnesite into assemblages of

MgOþCO2 (Fiquet et al., 2002) or MgOþCþO2 (Liu,

1999) was suggested on the basis of thermodynamic consider-

ations, such reactions are unlikely to occur along appropriate

geotherms in the lower mantle (Isshiki et al., 2004; Oganov

et al., 2008). Oganov et al. (2008) also predicted the formation

of other high-pressure forms of MgCO3 in the lowermost part

of the mantle, which are different from the magnesite II

reported by Isshiki et al. (2004). Accordingly, the stable struc-

ture of MgCO3 in this region of the mantle remains an open

question.

In contrast, certain amounts of CaCO3 could survive in the

subducted slabs without decarbonation or reaction with sur-

rounding minerals, due to the low temperatures of the slabs,

and thus are delivered into the lower mantle. CaCO3 adopts

the aragonite structure under P, T conditions of the uppermost

mantle, and this was found to transform to a high pressure

form with an orthorhombic symmetry at pressures greater

than �40 GPa and at temperatures 1500–2500 K using

LHDAC (post-aragonite phase; Ono et al., 2005c). Although

the possibility of the transformation of CaCO3 aragonite to a

trigonal phase is suggested on the basis of DAC experiments at

room temperature (Santillán and Williams, 2004), this phase

was demonstrated to have been metastably formed and the

transformation of the post-aragonite phase into an

orthopyroxene-type structure (post-postaragonite phase) was
Table 1 Representative chemical compositions of lower mantle and thos

Lower mantle

Chondrite Pyrolite

SiO2 53.8 44.5
TiO2 0.2 0.2
Al2O3 3.8 4.3
Cr2O3 0.4 0.4
FeO 3.5 8.6
MgO 35.1 38.0
CaO 2.8 3.5
Na2O 0.3 0.4
K2O – 0.1

Chondrite, Liu (1982); pyrolite, Sun (1982); harzburgite, Michael and Bonatti (1985); MORB
confirmed at pressures above �130 GPa and temperatures

above �1500 K by in situ x-ray observations (Ono et al.,

2007), as predicted by an ab initio study (Oganov et al.,

2006). Thus, MgCO3 and possibly CaCO3 are the potential

hosts of CO2 throughout most parts of the lower mantle,

except for the bottom parts of the D00 layer (Isshiki et al.,

2004; Oganov et al., 2008).
2.03.4 Phase Transitions and Density Changes in
Mantle and Slab Materials

2.03.4.1 Chemical Compositions and Density Calculations

Subducting oceanic lithosphere is modeled by layers of basaltic

oceanic crust of �6 km thickness, underlain by thicker layers

(�50–100 km) of residual harzburgite and fertile lherzolite,

which are covered with thin (�1 km) terrigeneous and/or

pelagic sediments. Typical chemical compositions of these

lithologies are listed in Table 1. Most parts of the sedimentary

materials are believed to be trapped to form accretion terrains

underneath island arcs upon subduction of slabs at ocean

trenches, although geochemical evidence suggests certain

parts of such materials may be subducted deeper into the

mantle (e.g., Loubet et al., 1988). At least part of the bottom

warmer lherzolite layer of a slab may also be assimilated to the

surrounding mantle during subduction in the upper mantle

and mantle transition region, and thus the slab approaching

the 660 km seismic discontinuity can reasonably be modeled

by a layered structure of basaltic and harzburgitic rocks

(Ringwood and Irifune, 1988).

The chemical composition of the lower mantle has been a

major controversial issue in the mineralogy of the Earth’s

interior. Some (e.g., Ringwood, 1962) believe peridotitic or

pyrolitic materials are dominant in the whole mantle, while

others (e.g., Anderson, 1989; Hart and Zindler, 1986; Liu,

1982) claim more Si-rich chondritic materials should be rep-

resentative for the composition of the lower mantle (Table 1).

The difference is based on rather philosophical arguments on

the origin and subsequent differentiation processes of the

Earth, which are critically dependent on the models of con-

densation/evaporation processes of elements and compounds

in the primordial solar system and the possible formation of a

deep magma ocean in the early stage of the formation of the

Earth. As the elastic properties, particularly those related to
e related to subducting slabs

Harzburgite MORB Continental crust

43.6 50.4 66.0
– 0.6 0.5
0.7 16.1 15.2
0.5 – –
7.8 7.7 4.5
46.4 10.5 2.2
0.5 13.1 4.2
– 1.9 3.9
– 0.1 3.4

, Green et al. (1979); continental crust, Taylor and McLennan (1985).
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shear moduli, of high-pressure phases have not been well

documented under the pressure and temperature conditions

of the lower mantle, it is hard to unambiguously evaluate the

feasibility of these two alternative composition models in the

light of mineral physics and seismological observations (e.g.,

Bina, 2003; Mattern et al., 2005). Some efforts have been made

to directly measure the elastic properties under the P, T condi-

tions of the lower mantle (Murakami et al., 2012), but we need

further data on the elastic properties of major minerals in the

lower mantle and their pressure, temperature, and composi-

tional dependencies to reach a decisive conclusion on the

feasible chemical composition. Moreover, the knowledge of

variation of temperature with depth is vital to address this

issue, but this also has not been well constrained in the lower

mantle.

Here, we assume the whole mantle is of a pyrolitic compo-

sition to address the phase transitions and associated density

changes in the lower mantle, as there are significant chemical

variations in the chondritic models and also because high-

pressure experimental data on these compositions have been

scarce to date. We also assume the major lithologies trans-

ported into the lower mantle via subduction of slabs are of

MORB and harzburgite compositions. Some recent studies

suggest that the continental crust may also be delivered to the

mantle transition region (Ichikawa et al., 2013; Kawai et al.,

2013), but it should be difficult to subduct further into the

lower mantle, considering the density relations between the

continental crust material and surrounding mantle at around

the 660 km discontinuity (Irifune et al., 1994; Ishii et al., 2012;

Kawai et al., 2013). Phase transitions in MORB have been

extensively studied down to the depths near the mantle–core

boundary. In contrast, although virtually no experimental data

exist on harzburgite compositions in this depth region, they

can be reasonably estimated from those available on the high-

pressure phases with simple chemical compositions, as harz-

burgitic compositions have a minor amount of Fe and only

very small amounts of Ca, and Al, and are well approximated

by the MgO (FeO)–SiO2 system.

We calculated the density changes in pyrolite, harzburgite,

and MORB compositions using available experimental data as

follows: The densities of the individual high-pressure phases

appeared in these lithologies were calculated at given pressures

using the thermal EoS combining third-order Birch–
Table 2 PVT-EoS parameters of lower mantle phases determined from v

Mg-Pv Fe-Pv Al2O3-Pv Mg-PPv

V0 (cm
3 mol�1) 24.45 25.48 24.77 24.6

B0 (GPa) 257 281 232 226
B0 4.02 4.02 4.3 4.41
YD (K) 1054 854 1020 1040
g 1.48 1.48 1.48 1.55
q 1.2 1.2 1.2 1.2

Mg-Pv (Fiquet et al., 2000; Shim and Duffy, 2000; Sinogeikin et al., 2004; Tsuchiya et al., 20

Parise et al., 1990), Al2O3-Pv (Thomson et al., 1996; Tsuchiya et al., 2005c), Mg-PPv (Tsuc

Wang et al., 1996), MgO (Fiquet et al., 1999; Sinogeikin and Bass, 2000), FeO ( Jackson et

Karki et al., 1997a; Ross et al., 1990; Tsuchiya et al., 2004c).

The high-T Birch–Murnaghan equation was applied only for the hexagonal aluminous phase

dB/dT¼�0.016 GPa K�1, and a0¼3.44�10�5 K�1 (Shinmei et al., 2005; Sanehira et al.
Murnaghan EoS and Debye theory along an appropriate

geotherm, using the PVT-EoS parameters given in Table 2.

The resultant density changes of individual phases along the

geotherm are depicted in Figure 9. The density changes in the

bulk rocks were then calculated using the proportions of the

individual phases with pressure along the geotherm.

Although some recent studies suggest that sub-adiabatic

temperature gradients are required to match the observed and

calculated density and bulk sound velocity for pyrolitic com-

positions (Bina, 2003; Mattern et al., 2005), we simply

assumed adiabatic temperature changes throughout the lower

mantle (i.e., 1900 K at 660 km and 2450 K at 2890 km with an

averaged gradient of dT/dz¼�0.3 K km�1; e.g., Brown and

Shankland, 1981) as such conclusions are not robust, given

the uncertainties in both mineral physics measurements and

seismological observations. In addition, significantly sharp

temperature increases are expected to occur near the mantle–

core boundary and presumably near the 660 km discontinuity

as these regions are accompanied by chemical changes and

form thermal boundary layers, which are also not taken into

account in the present calculations.
arious experimental and theoretical data and their systematics

Ca-Pv MgO FeO SiO2-St SiO2-a-PbO2

27.45 11.36 12.06 14.02 13.81
236 158 152 314 325
3.9 4.4 4.9 4.4 4.2
984 725 455 1044 1044
1.53 1.5 1.28 1.34 1.34
1.6 1.5 1.5 2.4 2.4

04a, 2005b), Fe-Pv ( Jeanloz and Thompson, 1983; Kiefer et al., 2002; Mao et al., 1991;

hiya et al., 2004a, 2005b), Ca-Pv (Karki and Crain, 1998; Shim et al., 2000b;

al., 1990; Jacobsen et al., 2002; Systematics), SiO2 (Andrault et al., 2003;

with parameters: V0¼110.07 cm3 mol�1, B0¼185.5 GPa, B’¼4 (fix),

, 2005).
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The mineral proportion changes in pyrolite, harzburgite,

and MORB compositions are shown in Figure 10, while the

calculated density changes of these lithologies are depicted in

Figure 11. The density changes at pressures lower than 30 GPa

are based on an earlier estimate of Irifune (1993), using a

similar method and mineral physics parameters. Although

the density change in pyrolite seems to agree well with that of

PREM (Preliminary Reference Earth Model; Dziewonski and

Anderson, 1981), the latter estimate inevitably has significant

uncertainties, as this density profile is rather indirectly
determined from seismic velocities with some assumptions.

The calculated density values may also have significant errors,

mainly due to the uncertainty in the geotherm stated in the

above. Nevertheless, mineral physics parameters to constrain

the density have been reasonably well determined, mostly on

the basis of in situ x-ray diffraction measurements, and the

differences among these calculated density profiles are

regarded as robust results.
2.03.4.2 Phase and Density Relations

2.03.4.2.1 Pyrolite
Figure 10(a) illustrates the phase transitions in pyrolite as a

function of depth. Pyrolite transforms from an assemblage of

ringwoodite (Rw)þmajorite garnet (Mj)þCa-Pv under the P,

T conditions of the mantle transition region to that of

Mg-PvþCa-PvþMjþMw at depths near the 660 km seismic

discontinuity. The spinel to postspinel transition in this com-

position is actually believed to have occured at pressures near

23.5 GPa and at a temperature of �2000 K, on the basis of

quench experiments (e.g., Irifune, 1994). The slope of this

phase transition boundary has also been determined by both

quench experiments (Ito and Takahashi, 1989) and calorimet-

ric measurements (Akaogi and Ito, 1993), yielding a value

of ��3 MPa K�1. Although some recent studies suggest some-

what lower transition pressures (Fei et al., 2004; Irifune et al.,

1998a,b; Katsura et al., 2003; Kono et al., 2010; Tange et al.,

2009a) and larger Clapeyron slope (Fei et al., 2004; Katsura
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et al., 2003), the spinel to postspinel transition is generally

believed to be the main cause of the 660 km discontinuity,

which is followed by the smeared out transition of majorite to

Pv over a pressure interval of �2 GPa (Irifune, 1994;

Nishiyama et al., 2004).

Mg-Pv is stable throughout most regions of the lower man-

tle, but it is found to transform to the Mg-PPv with the CaIrO3

structure in a peridotite composition at pressures close to

those near the top of the D00 layer. A small density jump of

about 1–1.5% is expected to occur associated with this transi-

tion in the lower mantle. Ca-Pv, on the other hand, is likely to

adopt the cubic structure throughout the lower mantle. On the

other hand, Mw remains in the rock salt (B1) structure at

pressures to �80 GPa, where it may transform to the NiAs

(B8) structure if iron concentration is very high (Fei and

Mao, 1994). A high-spin to low-spin transition has also been

demonstrated to occur in this phase over the pressure range of

the upper to middle lower mantle, as shown in Figure 6, which

may yield an additional gradual density increase over this

interval and also affect partitioning of iron between this

phase and the ferro-silicate Pv (Irifune et al., 2010).

Although element partition data among the coexisting

phases under the lower mantle conditions have been limited

to those below �50 GPa in KMA for the pyrolite composition

(e.g., Irifune, 1994; Irifune et al., 2010; Wood, 2000), some

results have also been obtained using LHDAC combined with

ATEM at higher pressures (e.g., Murakami et al., 2005; Ono

et al., 2005d; Sinmyo and Hirose, 2013). These studies, partic-

ularly those using KMA, demonstrated that the presence of a

minor amount (�5 wt%) of Al2O3 in Mg-Pv has dramatic

effects on the partitioning of iron between Mg-Pv and Mw, in

addition to those on the compressibility of Mg-Pv, below

�30 GPa. Nevertheless, the variations in iron partitioning

between the two phases would not cause any significant

changes in the bulk density of the pyrolitic mantle (e.g., Bina,

2003; Irifune et al., 2010). Some notable changes in the iron

partitioning between Mg-Pv and Mw have also been suggested

upon the Pv–PPv transition in a recent LHDAC study

(Murakami et al., 2005; Sinmyo et al., 2011), but it may also

yield invisible effects on the density change in the pyrolite bulk

composition.

2.03.4.2.2 Harzburgite
Harzburgite, with Mg# (¼Mg/(MgþFe)�100)¼�92 as listed

in Table 1, crystallizes to form an assemblage of �80% olivine

and �20% orthopyroxene at depths in the uppermost mantle,

which transforms to Mg-Pv and Mw near the 660 km discon-

tinuity via an assemblage of RwþMjþakimotite (Akm, ilmen-

ite form of MgSiO3) as shown by Irifune and Ringwood

(1987). Although no experimental data have been available

at pressures higher than 26 GPa, the nature of the phase tran-

sition in this composition can be evaluated based on the

changes in these two phases under the lower mantle condi-

tions. The result estimated along the adiabatic geotherm is

shown in Figure 10(b), which shows that this lithology is less

dense than pyrolite throughout the lower mantle except for a

very limited region immediately below the 660 km disconti-

nuity (Irifune and Ringwood, 1987), where the density rela-

tion reverses due to the completion of the spinel to postspinel

transition at lower pressures in the harzburgite composition.
It was suggested that Fe significantly lowers the Pv–PPv

transition pressure (Mao et al., 2004, 2005), while more recent

studies showed that the effect of iron on this transition pres-

sure is rather opposite (Andrault et al., 2010; Hirose et al.,

2008; Sinmyo et al., 2008) as stated earlier. On the other

hand, the presence of Al may also slightly affect this transition

pressure (Tateno et al., 2005; Tsuchiya and Tsuchiya, 2008;

Tsuchiya et al., 2005c), as shown in Figures 2–4. In harzburgite

compositions, Mg-Pv should have less alumina and iron

content as compared with those of Mg-Pv in pyrolite under

the lower mantle conditions. However, as the differences in the

contents of Fe and Al between these two lithologies are rela-

tively small, we assume the Pv–PPv transition occurs at the

same pressure in these compositions, although further detailed

experimental studies on these compositions are needed to

resolve this issue.

2.03.4.2.3 Mid-ocean ridge basalt
Phase transitions in basaltic compositions, such as illustrated

in Figure 10(c) for a MORB composition, are quite different

from those expected in pyrolite and harzburgite compositions.

Basaltic compositions are shown to crystallize to Mjþ small

amounts of St in the mantle transition region (Hirose et al.,

1999; Irifune and Ringwood, 1987, 1993; Ono et al., 2001),

and then progressively transform to an assemblage of

Ca-PvþMg-PvþStþAl-rich phase (NAL phase, which is

replaced by the CF phase at pressures greater than �50 GPa

according to Ricolleau et al., 2010) over a wide pressure range

of �3 GPa (from �24 to �27 GPa). Although the garnetite

facies of MORB, composed mainly of Mj, are substantially

denser than pyrolite, a density crossover is expected to occur

in a limited depth range (660 to �720 km) of the uppermost

lower mantle due to this smeared-out nature of the garnetite to

Pv transition in MORB.

Once Ca-Pv and Mg-Pv are formed in basaltic composi-

tions, it is shown that they become denser than pyrolite or

peridotite throughout almost the entire region of the lower

mantle (Hirose et al., 1999, 2005; Irifune and Ringwood,

1993; Ono et al., 2001, 2005d). As St is highly incompressable

(Figure 9), the density of the perovskite facies of basaltic

compositions may approach that of the pyrolitic composition

with increasing pressure. However, the transition of St to CaCl2
(CC) and a-PbO2 (AP) structures should keep this lithology

denser than pyrolite throughout the lower mantle, as shown in

Figure 11. In fact, most recent experimental studies using

LHDAC (Hirose et al., 2005; Ono et al., 2005d; Ricolleau

et al., 2010) conclude that densities of basaltic compositions

are higher than those in the representative model mantle com-

positions throughout the lower mantle by about 0.02–

0.08 g cm�3, depending on the adopted pressure scale for gold.
2.03.5 Mineralogy of the Lower Mantle

2.03.5.1 The 660 km Discontinuity

The 660 km seismic discontinuity is a globally recognized

feature, and is the sharpest among the proposed discontinu-

ities throughout the whole mantle. The cause of this

discontinuity (chemical or phase transition boundary) has

been a major controversial issue in Earth sciences as stated
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earlier, but the detailed experimental study based on quench

experiments using KMA strongly suggested that this is caused

by the spinel to postspinel transition in a pyrolite or peridotitic

mantle (Irifune, 1994; Ito and Takahashi, 1989). The experi-

mental data on the sharpness, pressure, and Clapeyron slope of

this phase transition all seemed to be consistent with those

estimated from seismological observations.

However, recent experimental, seismological, and

geodynamic studies cast some doubt on the simple idea of

the phase transition. Precise in situ x-ray diffraction measure-

ments using KMA demonstrated that this transition occur at

pressures somewhat (�2.5–1 GPa) lower than that correspond-

ing to the 660 km discontinuity (Fei et al., 2004; Irifune et al.,

1998a; Katsura et al., 2003; Matsui and Nishiyama, 2002;

Nishiyama et al., 2004), although some LHDAC experiments

reported the phase transition pressure is rather consistent with

that of the discontinuity (Chudinovskikh and Boehler, 2001;

Shim et al., 2001a). Meanwhile, reevaluation of the transition

pressure using the latest MgO pressure scales based on a theo-

retical analysis (Tange et al., 2009a) and sound velocity mea-

surement (Kono et al., 2010) shows that the pressure for

the spinel to postspinel transition is close to, but slightly

(�0.5–1 GPa) lower than, that of the 660 km discontinuity.

In addition, seismological observations suggest this disconti-

nuity is divided into several discontinuities in some areas (e.g.,

Simmons and Gurrola, 2000), which cannot be explained by

the spinel to postspinel transition alone.

Moreover, recent in situ x-ray diffraction measurements

have suggested that the Clapeyron slope of the spinel to post-

spinel transition is significantly larger (�2 to �0.4 MPa K�1;

Fei et al., 2004; Katsura et al., 2003; Litasov et al., 2005) than

previously thought (��3 MPa K�1; Akaogi and Ito, 1993; Ito

and Takahashi, 1989) and ab initio prediction (��2 MPa K�1;

Yu et al., 2006). If this is the case, it should be difficult to trap

the subducted slabs underneath many subduction zones near

this boundary, known as ‘stagnant slabs’ (e.g., Fukao et al.,

1992, 2001; Zhao, 2004), in the light of geodynamics calcula-

tions (e.g., Davis, 1998), unless a large viscosity jump at

the 660 km depth and a concept of trench retreat are intro-

duced (Torii and Yoshioka, 2007). Furthermore, the observed

depth variations of the 660 km discontinuity sometimes

reach �30–40 km (e.g., Flanagan and Shearer, 1998), which

corresponds to a temperature difference of �1000 K if we

adopt dP/dT¼�1 MPa K�1 for the spinel–postspinel transi-

tion boundary. Such a temperature difference between sub-

ducting slabs and the surrounding mantle near the 660 km

discontinuity should be too large to be accounted for by seis-

mological tomographic observations or by any reasonable

models of thermal structures of the subducting slabs.

Nevertheless, considering the uncertainties in pressure and

temperature measurements in the in situ x-ray observations in

KMA due to unresolved problems on the pressure scales and

temperature measurements at high pressure using thermocou-

ple electromotive force, it is generally accepted that the 660 km

discontinuity can be explained by the spinel–postspinel tran-

sition in a pyrolitic mantle. Recent studies also suggested pos-

sibilities of elucidating the multiple nature and the depth

variation of the 660 km discontinuity by reactions involving

akimotite at relatively low temperatures (Hirose, 2002;

Weidner and Wang, 2000; Zhou et al., 2013). In this case, the
high velocity/density gradients shown in some representative

seismological models at depths of 660–750 km may be largely

explained by the smeared-out transition of majorite to perov-

skite in pyrolite over this depth interval (Irifune, 1994).

Models with chemical composition changes may reconcile

the contradictory experimental and seismological observations

regarding the 660 km discontinuity. If the spinel to postspinel

transition does occur at pressures lower than that of 660 km

(�23.5 GPa) by, for instance, 1 GPa, the phase discontinuity

should locate at about 630 km in a pyrolite mantle. As the

oceanic crust component of the subducted slab, modeled by

the MORB composition, becomes less dense than the sur-

rounding pyrolite mantle immediately below this depth as

shown in Figure 11, it should have been buoyantly trapped

on this primordial ‘630 km discontinuity’ at the initial stage of

the onset of operation of plate tectonics.

The delamination and accumulation of the former oceanic

crust, transformed to garnetite in the mantle transition region,

can be enhanced by its plausible different viscosity relative to

the surrounding mantle (Karato, 1997) and extremely slow

reaction kinetics upon transitions to the denser phase assem-

blages including Mg-Pv (Kubo et al., 2002) or majorite (Nishi

et al., 2011). Continuation of this process of trapping basaltic

crust over a couple of billion years should yield a thick (on

average �50–100 km, depending on the production rates of

oceanic crust and efficiency of the trapping) layer of garnetite

near the 630 km discontinuity. The garnetite layer develops

both upward and downward from this primordial discontinu-

ity if it isostatically floats on this boundary. The bottom of this

garnetite layer eventually reaches 660 km, under which the

harzburgite portion of the subducted slab should be present.

In fact, some mineral physics studies suggest the uppermost

lower mantle can be Mg-rich as compared with the deeper

regions (Bina, 2003; Nakagawa et al., 2010).

Accumulation of oceanic crust above the 660 km seismic

discontinuity was originally proposed by Anderson (1979) to

form an eclogite layer in the lower half of the upper mantle and

throughout themantle transition region. He later confined it to

the latter region and favored a more mafic lithology named

‘piclogite’ (e.g., Anderson and Bass, 1986; Duffy and Anderson,

1989). Ringwood (1994) also proposed the presence of a thin

(�<50 km) layer of former basaltic crust immediately above

the lower mantle, as a result of accumulation of relatively

young and warm slab materials at the 660 km discontinuity.

The above model of a thicker garnetite layer is thus in between

those proposed by these authors. Some numerical analyses

with seismological data (Camarano et al., 2009) and

geodynamic modeling (Nakagawa et al., 2010) using available

mineral physics data also suggest that the proportion of MORB

would increase with depth in the mantle transition region.

On the other hand, recent developments in combined

in situ x-ray and ultrasonic interferometry measurements in

KMA allowed us to precisely determine sound velocities of

high-pressure minerals under the pressure and temperature

conditions of the mantle transition region (Higo et al., 2008;

Li, 2003). The results using this technique demonstrated that

both pyrolite and MORB compositions fail to explain the

seismological velocity models for the lower parts of the mantle

transition region (Irifune et al., 2008; Kono et al., 2012),

consistent with the results of ab initio calculations (Tsuchiya,
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2011). Irifune et al. (2008) suggested that the bottom parts of

the mantle transition region may be filled with harzburgite

instead of MORB, as discussed above, and may be the main

body of the subducted slabs. Further studies are needed to

identify the chemical composition of this region of the mantle

around 660 km, which is important in addressing the nature

and origin of this largest seismic discontinuity in the mantle.
2.03.5.2 Middle Parts of the Lower Mantle

The uppermost part of the lower mantle is believed to be

structurally and chemically heterogeneous due to the presence

of stagnant slabs (Fukao et al., 1992, 2001; Zhao, 2004) which

were originally proposed as ‘megaliths’ on the basis of high-

pressure experimental studies (Ringwood, 1994; Ringwood

and Irifune, 1988). Moreover, there are some areas where

slabs appear, from tomographic images, to penetrate deep

into the lower mantle (e.g., Fukao et al., 2001; van der Hilst

et al., 1997), which should contribute to the observed reflec-

tion, refraction, or conversion of seismic waves at these depths.

Thus, the presence of subducted slabs in the uppermost lower

mantle may, at least partly, contribute to the transitional

nature of the seismic velocities for a depth interval between

660 and �750 km in some global models of the velocity

profiles.

In the deeper parts of the lower mantle, discontinuous

changes in seismic velocities have also been suggested to

occur, particularly at depths 900–1200 km beneath some sub-

duction areas (Kaneshima, 2003; Kawakatsu and Niu, 1994;

Kruger et al., 2001; Niu and Kawakatsu, 1996). As there are no

major phase transitions in the mantle material modeled by

pyrolite as shown in Figure 10(a), such discontinuous changes

are most likely to be related to the subducted slab materials.

Both basaltic and underlying harzburgite layers of such slabs

may yield locally high acoustic impedance to produce seismic

discontinuities, because these basaltic and harzburgite mate-

rials seem to have seismic velocities higher than those of the

mantle material in this region of the lower mantle (e.g., Bina,

2003), in addition to their lower temperatures compared to the

surrounding mantle.

In further deeper parts of the lower mantle (�1200–

1850 km in depth), the presence of seismic scattering bodies

with a low velocity signature was recognized (Kaneshima and

Helffrich, 1999, 2003; Vinnik et al., 2001). As shown earlier,

the most notable phase transition in major minerals in sub-

ducted slab and the surrounding mantle materials is the rutile

to CaCl2 transition of SiO2 in subducted former oceanic crust

under the P, T conditions of the middle part (�1600 km,

corresponding to pressures of �70 GPa; Tsuchiya et al.,

2004c) of the lower mantle. A significant shear softening is

expected to occur in St associated with this phase transition

(Andrault et al., 1998; Karki et al., 1997b; Shieh et al., 2002).

Thus, this transition in subducted basaltic material may

explain the signatures of the scatterers observed in the middle

part of the lower mantle. In contrast, the electronic spin tran-

sition in Mw in the upper to middle regions of the lower

mantle may yield some variations in sound velocities, but

these changes are rather gradual and probably seismologically

invisible (e.g., Lin et al., 2013).
Tomographic imaging and other seismological studies

demonstrate that only little anomalous changes in seismic

velocities exist in the middle to lower part of the lower mantle

except for regions related to subducted slabs and rising plumes

(e.g., Grand et al., 1997; Mattern et al., 2005; Zhao, 2004). As

shown in the previous section, no major phase changes have

been reported in Mg-Pv, Ca-Pv, and Mw at pressures up

to �120 GPa, except for the slight distortion of cubic Ca-Pv

to a tetragonal structure and the spin transitions in both Mg-Pv

and Mw. It is expected that the transition in Ca-Pv may not

occur at temperatures of the lower mantle, while the spin

transitions should occur continuously over a wide pressure

range as shown in Figures 7 and 6, respectively. Accordingly,

both of these transitions would not cause any notable seismic

velocity changes in this region, although further study is

required to address the effects of the possible dissociation of

Mw mentioned earlier. Thus, the relatively homogeneous

nature in seismic velocity distributions in the middle to lower

parts of the lower mantle is consistent with the absence of

major phase transitions in the mantle material.

On the other hand, seismological, geochemical, and

geodynamic studies suggest that there should be a chemically

distinct regions at depths below 1500–2000 km, presumably

due to iron-enrichment related to the primitive mantle mate-

rials or interaction with the rising hot plumes (e.g., Ishii and

Tromp, 1999; Kellogg et al., 1999; Trampert et al., 2004).

Attempts have been made to estimate the chemical composi-

tion of the lower mantle by mineral physics tests (e.g., Bina,

2003; Jackson and Rigden, 1998; Mattern et al., 2005), com-

paring calculated densities and bulk sound velocities of various

compositions with those obtained seismologically. However, it

is difficult to constrain the chemical composition of the lower

mantle without reasonable estimations of thermal structures in

this region and of shear properties of the relevant high-pressure

phases. Actually, a wide range of chemical compositions from

peridotite to chondrities can be accommodated for the accept-

able geotherms, although anomalously high XMg (¼Mg/

(MgþFe)) and low XPv (¼Si/(MgþFe)) and low XMg and

high XPv are suggested in the uppermost and lowermost

�200 km of the lower mantle, respectively (Bina, 2003).

The possible iron and silica rich nature in the bottom part

of the lower mantle may reflect the heterogeneous chemical

composition and mineralogy of this region. These silicon-rich

signatures can be explained by the presence of subducted oce-

anic crust materials in this region, which are denser than the

surrounding pyrolitic or harzburgitic lower mantle materials,

as shown in Figure 11, although the fraction of the basaltic

component can significantly vary depending on its composi-

tion (Nakagawa et al., 2010). The CaCl2–a-PbO2 transition in

SiO2 is calculated to take place at 120–125 GPa and 2000–

2500 K (Tsuchiya et al., 2004c), which should stabilize the

SiO2-bearing basaltic material in the D00 layer. Moreover, SiO2

is also expected to exist in this region as a product of the

reaction between the solid silicate Pv (or PPv) of the mantle

and the molten Fe of the outer core (Knittle and

Jeanloz, 1991).

In contrast, the Mg-rich and Si-poor refractory nature of the

uppermost part of the lower mantle suggested by Bina (2003)

could be due to the presence of accumulated harzburgite-rich

bodies of the stagnant slabs (Fukao et al., 1992; Irifune et al.,
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2008; Nakagawa et al., 2010; Ringwood and Irifune, 1988).

This is mainly because harzburgite is less dense than pyrolite

throughout the lower mantle, as is seen in Figure 11. Never-

theless, the density difference is not so large, and the thermal

anomalies due to subduction of slabs or rising plumes may be

more effective in circulation of the harzburgitic materials

within the lower mantle.
2.03.5.3 PPv Transition and the D00 Layer

The bottom�200 km of the lower mantle is known as a highly

heterogeneous region on the basis of seismological observa-

tions, named as the D00 layer to distinguish it from the grossly

homogeneous part of the lower mantle above (region D;

Bullen, 1949). The horizontally and vertically heterogeneous

nature of the D00 layer is primarily because this region is the

chemical boundary layer between convective rocky mantle and

molten iron core, which inevitably produces a large thermal

boundary layer (△T>�1000 K; e.g., Williams, 1998) and

accordingly yields active reactions of mantle and core materials

(e.g., Knittle and Jeanloz, 1991), partial melting of mantle and

slab materials (Lay et al., 2004), generation of hot mantle

plumes (Garnero et al., 1998), etc. Various models have been

proposed to account for the observed complex seismological

signatures of D00 as reviewed by Garnero et al. (2004).

The recent finding of the Pv–PPv transition in MgSiO3 has

dramatically affected the conventional interpretations of the

complex and heterogeneous features of the D00 layer. Many

researchers in different research fields of Earth sciences, includ-

ing mineral physics, seismology, geochemistry, mantle dynam-

ics, etc., have started studies relevant to these topics, and a

number of papers have been published immediately after the

appearance of the first report on this issue (Murakami et al.,

2004a). The rate of data accumulation is so fast and the rele-

vant research fields so vast that we are unable to thoroughly

evaluate all of these studies at this time. So, instead of discuss-

ing the origin of the D00 layer based on rather immature knowl-

edge in these broad research fields, we herein summarize and

examine currently available phase relations and some physical

properties of the PPv in terms of high-pressure experimental

and theoretical points of view. We will discuss the subject and

speculate on the nature of the D00 layer within these mineral

physics frameworks.

Now, what is most robust is that the Pv–PPv transition in

MgSiO3 does occur at pressures near the D00 layer on the basis

of both high-pressure experiments and ab initio calculations.

Also true is the fact that the latter phase adopts the crystal

structure of CaIrO3 type as evident from all of these studies.

The density increase in Mg-Pv associated with this transition is

most likely to be only 1.2–1.5% as constrained experimentally

and predicted by ab initio calculations. The remarkable agree-

ments among these independent studies on both experimental

and theoretical bases strongly suggest that these should be

regarded as facts beyond any doubts.

On the other hand, there are some uncertainties in the

phase transition pressure and its temperature dependency.

The pressures calculated with different scales in DAC experi-

ments, even for those based on the EoS of gold, may differ by as

much as 10–15 GPa at pressures of D00 layer (�120–136 GPa)

due to the inaccuracy of the EoSs of pressure reference
materials as discussed earlier (see Figure 1), and accordingly

this transition could be realized only at pressures of the outer

core (Shim et al., 2004). Moreover, uncertainties in tempera-

ture measurements in LHDAC at these very high pressure

regions are fairly large, and are generally �10–20% of the

nominal values. These yield additional uncertainties of greater

than 2–5 GPa in pressure measurements in LHDAC. Thus, the

errors of the transition pressure can be ��20 GPa for the Pv–

PPv transition in MgSiO3 within the current state-of-the-art

LHDAC technology. Moreover, it is fair to say that the Cla-

peyron slope of this transition has been virtually uncon-

strained by LHDAC experiments.

In contrast, remarkably good agreement in phase transition

pressures (�110 GPa, at 0 K) and the Clapeyron slopes (7–

10 MPa K�1) have been obtained in some independent

ab initio calculations (Oganov and Ono, 2004; Tsuchiya

et al., 2004a), and these are consistent with the experimental

results and also with what are expected from seismological

observations (Sidorin et al., 1999). The mutual agreement

among the results of the ab initio calculations, however, does

not warrant the validity of these values, as these authors used

basically the same technique with only some relatively minor

difference in computational methods and techniques. Thus,

these results on the Pv–PPv phase boundary based on

ab initio calculations should be further tested on the basis of

experimental studies before they are regarded as robust ones.

Nevertheless, there is no strong evidence against the occur-

rence of the Pv–PPv transition at pressures about 120 GPa,

with a Clapeyron slope of 7–10 MPa K�1, and it is reasonable

to tentatively take these values as realistic ones. It has been

reported that such a large Clapeyron slope is expected to affect

the thermal structure of the lower mantle and, thus, enhances

the mantle convection and plume dynamics (Nakagawa and

Tackley, 2004). For actual mantle compositions, effects of

relatively minor elements such as Fe and Al should be taken

into account, but as we mentioned earlier, these may have

opposite effects in modifying the transition pressure which

should cancel out each other. Actually, recent experimental

results demonstrated that the Pv–PPv transition in peridotitic

compositions occurs at pressures close to 120 GPa (Murakami

et al., 2005; Ono et al., 2005d). Although a smeared-out tran-

sition is expected for this transition when some iron is incor-

porated in MgSiO3 (Mao et al., 2004, 2005), these studies on

the rock samples indicate that the pressure interval of the

mixed phase region of Pv and PPv is not so large, suggesting

the occurrence of a sharp boundary (Wysession et al., 1998). It

is also demonstrated that the PPv phase in the peridotite

composition is highly magnesium-rich relative to Mw

(Murakami et al., 2005), whereas PPv is reported to favor

iron compared with Pv in other experimental studies (Mao

et al., 2004, 2005; cf. Kobayashi et al., 2005).

Another striking feature of PPv is its elasticity, as predicted

by ab initio calculations (Iitaka et al., 2004; Oganov and Ono,

2004; Tsuchiya et al., 2004b). The predicted seismic wave

speeds of PPv are slightly faster in VP and VS and slower in VF

than those of Pv at the transition P, T condition as typically

observed at the D00 discontinuities (Lay et al., 2004). These

velocity changes across the transition boundary seem to

explain the enigmatic anticorrelated anomaly between VS and

VF observed at the bottom of the mantle (Wentzcovitch et al.,
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Figure 12 A schematic illustration of the plausible thermal structure at
the bottom of the lower mantle, where a steep temperature gradient
should be realized due to the formation of the thermal boundary layer.
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2006; Wookey et al., 2005). Also they can vary with changing

the iron and aluminum contents in Pv and PPv (Tsuchiya and

Tsuchiya, 2006).

Because of the peculiar crystal structure of PPv, which is

highly compressible along the b direction, this phase is sug-

gested to be elastically quite anisotropic. The ab initio studies

also reported that PPv polycrystalline aggregates with lattice-

preferred orientation (LPO) around some crystallographic

directions produced by macroscopic stress appear to explain

the observed anisotropic propagation of seismic waves in

some regions of the D00 layer. In particular, some ab initio

studies on high-temperature elasticity (Stackhouse et al.,

2005a; Wentzcovitch et al., 2006) showed that the transversely

isotropic aggregates of PPv can yield horizontally polarized

S wave (SH) which travels faster than vertically poralized

S wave (SV) at the lower mantle P, T condisitons, as observed

underneath Alaska and central America (Lay et al., 2004).

However, the peculiar nature of its shear elasticity suggests

that the simple shear motion along the layered structure may

not be applicable to the PPv phase at relevant pressures

(Tsuchiya et al., 2004b). Moreover, it was predicted that Mw

would have substantially large elastic anisotropy under the

lower mantle conditions (Yamazaki and Karato, 2002), sug-

gesting that the PPv phase may not be important in producing

anisotropic nature in the D00 layer.
The most likely region, where the Pv–PPv transition play

important roles in the D00 layer, is probably underneath some

of the subduction zones, where the temperatures are expected

to be relatively lower than that of the surrounding mantle. In

these relatively cold regions in the D00 layer, it is known that a

sharp discontinuity exists on the top of this layer, under which

the highly anisotropic nature of propagation of SV and SH has

also been recognized. If this discontinuity corresponds to the

Pv–PPv transition, then one of the most likely features of this

transition, that is, its large Clapeyron slope of dP/dT¼7–

10 MPa K�1, suggests that such discontinuity may not exist in

warmer regions. For instance, if the temperature in the warmer

region is higher than the cold areas by several hundred degrees

(such a lateral temperature variation is very likely to exist in the

CMB region), this transition would occur in the middle of the

D00 layer. However, as the temperature is expected to increase

sharply toward the CMB within the D00 layer, the geotherm in

the warmer region may not cross the Pv–PPv phase boundary

as illustrated in Figure 12, although some seismological obser-

vations would suggest not so high CMB temperatures in most

regions of the lower mantle (Kawai and Tsuchiya, 2009). In

contrast, it is interesting to see that there is a possibility that the

geotherm in the colder region might cross the boundary twice,

as suggested by recent computational modeling (Hernlund

et al., 2005; Wookey et al., 2005).

Thus, if the transition pressure and the Clapeyron slope of

the Pv–PPv transition predicted by ab initio calculations are

correct, many of the observed features in the CMB region can

be explained. In warmer regions such as underneath Hawaii or

South Africa, this transition would not have any significant role

in producing the peculiar features, such as the presence of an

ultra-low velocity region or a large low velocity structure in

these regions, which should be attributed to other phenomena,

such as partial melting of the D00 layer material or chemical

changes (e.g., Lay et al., 2004). Reactions between Mg-Pv in the
warm regions with liquid iron may produce an iron-rich PPv

phase in these regions, which could also contribute to the

observed low velocities in these regions, as suggested by Mao

et al. (2005). Such reactions between Pv (or PPv) and molten

iron should be further explored experimentally to address the

nature of the (ultra-) low velocity zones within the D00 layer.
Over the past 30 years, the lowermost part of the Earth’s

mantle, theD00 layer, has been recognized as being a seismological

anisotropic structure, whereas the rest of the lower mantle is

nearly isotropic (Kendall and Silver, 1996; Mitchell and

Helmberger, 1973; Panning and Romanowicz, 2004; Vinnik

et al., 1998). Several observations suggest that the horizontally

polarized shear wave (VSH) is faster than the vertically polarized

shear wave (VSV) inmost areas of theD00 layer (Kendall and Silver,
1996; Vinnik et al., 1998) except beneath the Africa and Pacific

low-velocity provinces (Panning and Romanowicz, 2004). Sev-

eral scenarios have been proposed for the splitting mechanism of

the polarized shear waves in the D00 layer. One is the formation of

shape-preferred orientations due to the alignment of fluid-

inclusion or anisotropic atomic diffusion (Mainprice et al.,

2000). Another, more efficient, origin can be found in the devel-

opment of the LPO of (Mg,Fe)-PPv, which is thought to be the

most abundant mineral in the D00 layer (Tsuchiya et al., 2004a)

with a strong elastic anisotropy (Tsuchiya et al., 2004b), during

plastic deformation with anisotropic shear response of the slip

systems, such as dislocation creep or mechanical twinning.

Although several high-pressure experiments have been performed

to understand the plastic deformationmechanism of PPv (Hirose

et al., 2010; Merkel et al., 2007; Miyagi et al., 2010, 2011; Okada

et al., 2010), results are still largely controversial primarily due to

experimental difficulty in determining the stable slip plane

(Merkel et al., 2007; Miyagi et al., 2010). Most of these deforma-

tion experiments were conducted at room temperature, which is

far lower than the geophysically relevant temperature of the D00

region of �2500–3800 K (Brown and Shankland, 1981; Kawai

and Tsuchiya, 2009). However, a high-temperature deformation

experiment (Hirose et al., 2010) also shows the (001) plane as the

stable slip plane of PPv. This slip mechanism can explain the
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VSH>VSV type polarization anisotropy observed in the D00 layer
(Tsuchiya et al., 2004b).

Some theoretical studies also suggested contradicting

results regarding the (100) or (110) slip planes (Oganov

et al., 2005b) and (010) (Carrez et al., 2007) for PPv, primarily

because these examined only particular structure modifications

or calculated the GSF energies of limited slip planes. Another

work of Fe-bearing Mg-PPv, on the other hand, calculated the

GSF of several slip systems (Metsue and Tsuchiya, 2013) and

found that pure and Fe-bearing MgSiO3 PPv should demon-

strate similar LPO patterns with a strong signature of the [100]

(001) slip system. Note again that an aggregate with this defor-

mation texture is expected to produce a VSH>VSV type polari-

zation anisotropy, being consistent with seismological

observations.
2.03.6 Summary

Recent advances in both experimental and computational

techniques have enabled the quantitative study of phase

transitions and mineral physics properties under the lower

mantle P, T conditions. Although uncertainties in pressure

and temperature are of the order of �10% of the nominal

values in typical experiments of LHDAC, this apparatus can

now produce pressures and temperatures equivalent to

those of the center of the Earth. In contrast, pressures

available in KMA have long been limited to �30 GPa in

spite of its superiority in the accuracy of P, T measurements

over LHDAC. However, recent developments in KMA using

SD anvils expanded this pressure limit to the Mbar region,

allowing detailed mineral physics studies down to the mid-

dle part of the lower mantle.

The accuracy of the mineral physics studies based on

ab initio calculations has also been dramatically improved in

the last decade. A variety of methods and techniques have been

developed for the practical applications of DFT to mineral

physics studies at very high pressure and temperature. As a

result, remarkable agreements among the results from different

research groups have been obtained for the phase transition

pressures, elastic properties, etc., of some high-pressure phases

under the lower mantle pressures. Thus, such mineral physics

properties of high-pressure phases in the lower mantle can now

be evaluated and cross-checked on the basis of the indepen-

dent experimental studies using LHDAC and KMA and of

ab initio calculations.

Phase transitions in major and minor minerals relevant to

the mantle and subducted slabs have been studied by using the

above independent methods, which clarified structural phase

transitions in most of these minerals at pressures and temper-

atures characteristic of the lower mantle, although there

remain some controversial results on the phase transition pres-

sures, their temperature dependencies, element partitioning

among the coexisting phases, etc. Although the elastic proper-

ties of high-pressure phases, particularly shear properties, have

not been well documented under the lower mantle conditions,

EoS parameters of some of these phases have successfully been

determined by a combination of synchrotron source and

KMA–LHDAC or by ab initio methods. Thus, the density

changes in representative mantle and slab compositions can
be accurately evaluated on the basis of the thermoelastic data

on individual high-pressure phases and mineral proportion

changes in these compositions.

The 660 km discontinuity has conventionally been inter-

preted in terms of the spinel–postspinel phase transition in

Mg2SiO4. However, results of the recent experimental, seismo-

logical, and geodynamics studies do not seem to be totally

consistent with this interpretation. The presence of either a

basaltic or a harzburgite layer, as a result of accumulation of

subducted slab materials, may explain such inconsistency and

the complex structure near the 660 km discontinuity. The

validity of this and other classes of mineralogical models rele-

vant to the origin of the 660 km discontinuity can be evaluated

on the basis of mineral physics tests, when accurate elastic

wave velocity data are accumulated for the pyrolite, harzbur-

gite, MORB, and other subducted materials under the P, T

conditions corresponding to these depths.

The middle part of the lower mantle is believed to be

generally homogeneous in both mineralogy and chemistry, as

compared with those in the uppermost and lowermost parts of

the lower mantle. No major phase transitions are expected to

occur in the subducted slab lithologies and the surrounding

mantle under the P, T conditions of this part of the lower

mantle, except for the rutile to CaCl2 transition in SiO2 and

electronic spin transitions in Mw and Pv. The seismic scatterers

of presumably flat bodies found in the middle part of the lower

mantle should be related to this phase transition in the former

subducted oceanic crust, which may subduct into the deep

lower mantle once it passes the density crossover near the

660 km discontinuity. Thus, some parts of the basaltic compo-

nent of the slab may ultimately reach the bottom of the lower

mantle because of its higher density relative to the mantle

materials throughout the lower mantle. In contrast, a

harzburgite-rich layer may be present around the 660 km dis-

continuity as a result of accumulation of main bodies of stag-

nant slabs in this region. However, as the density difference

between this layer and the surrounding mantle is not large,

thermal effects should be predominant over the chemical

effects in gravitational stability of such a layer, leading to

possible generation of plumes in the region.

The Pv–PPv transition should have significant implications

for the structure, properties, and dynamics of the D00 layer.
Some properties, such as Clapeyron slope, transition pressure,

elastically anisotropic nature, and density increase relevant to

the Pv–PPv transition seem to be consistent with the seismo-

logically observed signatures in some regions of the D00 layer.
Further detailed and more accurate experimental studies on

this transition are required based on independent techniques

using KMA or LHDAC with improved accuracy, in addition to

the theoretical studies, to understand the nature of this region

of the lower mantle.
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Carrez P, Ferré D, and Cordier P (2007) Implications for plastic flow in the deep mantle
from modelling dislocations in MgSiO3 minerals. Nature 446: 68–70.

Catalli K, Shim S-H, and Prakapenka V (2009) Thickness and Clapeyron slope of the
post-perovskite boundary. Nature 462: 782–786.

Catti M (2001) High-pressure stability, structure and compressibility of Cmcm-
MgAl2O4: An ab initio study. Physics and Chemistry of Minerals 28: 729–736.

Chizmeshya AVG, Wolf GH, and McMillan PF (1996) First principles calculation of the
equation-of-state, stability, and polar optic modes of CaSiO3 perovskite.
Geophysical Research Letters 23: 2725–2728.

Chudinovskikh L and Boehler R (2001) High-pressure polymorphs of olivine and the
660-km seismic discontinuity. Nature 411: 574–577.

Cococcioni M and de Gironcoli S (2005) Linear response approach to the calculation of
the effective interaction parameters in the LDAþU method. Physical Review B
71: 035105.

Cohen RE, Mazin II, and Isaak DG (1997) Magnetic collapse in transition metal oxides at
high pressure: Implications for the Earth. Science 275: 654–657.

Crowhurst JC, Brown JM, Goncharov AF, and Jacobsen SD (2008) Elasticity of (Mg,Fe)
O through the spin transition of iron in the lower mantle. Science 319: 451–453.

Davis GF (1998) Plates, plumes, mantle convection, and mantle evolution. In: Jackson I
(ed.) The Earth’s Mantle, pp. 228–258. New York: Cambridge University Press.

Dekura H, Tsuchiya T, and Tsuchiya J (2013) Ab initio lattice thermal conductivity of
MgSiO3 perovskite as found in the Earth’s lower mantle. Physical Review Letters
110: 025904.

Demuth Th, Jeanvoine Y, Hafner J, and Ángyán JG (1999) Polymorphism in silica
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